版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.已知⊙O及⊙O外一點(diǎn)P,過(guò)點(diǎn)P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點(diǎn)A;②以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過(guò)點(diǎn)P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過(guò)圓心O,直角頂點(diǎn)落在⊙O上,記這時(shí)直角頂點(diǎn)的位置為點(diǎn)M;③作直線PM,則直線PM即為所求(如圖2).對(duì)于兩人的作業(yè),下列說(shuō)法正確的是()A.甲乙都對(duì) B.甲乙都不對(duì)C.甲對(duì),乙不對(duì) D.甲不對(duì),已對(duì)2.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.43.下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是()A. B. C. D.4.如圖,在△ABC中,點(diǎn)D是邊AB上的一點(diǎn),∠ADC=∠ACB,AD=2,BD=6,則邊AC的長(zhǎng)為()A.2 B.4 C.6 D.85.已知關(guān)于x的不等式組至少有兩個(gè)整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)6.甲隊(duì)修路120m與乙隊(duì)修路100m所用天數(shù)相同,已知甲隊(duì)比乙隊(duì)每天多修10m,設(shè)甲隊(duì)每天修路xm.依題意,下面所列方程正確的是A.B. C.D.7.tan45o的值為()A. B.1 C. D.8.等腰中,,D是AC的中點(diǎn),于E,交BA的延長(zhǎng)線于F,若,則的面積為()A.40 B.46 C.48 D.509.下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是A. B. C. D.10.有理數(shù)a,b,c,d在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)>﹣4 B.bd>0 C.|a|>|b| D.b+c>0二、填空題(共7小題,每小題3分,滿分21分)11.已知b是a,c的比例中項(xiàng),若a=4,c=16,則b=________.12.某廠家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價(jià)分別為袋中兩種原料的成本價(jià)之和.若甲產(chǎn)品每袋售價(jià)72元,則利潤(rùn)率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過(guò)100袋,會(huì)計(jì)在核算成本的時(shí)候把A原料和B原料的單價(jià)看反了,后面發(fā)現(xiàn)如果不看反,那么實(shí)際成本比核算時(shí)的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時(shí)實(shí)際成本最多為_____元.13.如圖,在等腰直角三角形ABC中,∠C=90°,點(diǎn)D為AB的中點(diǎn),已知扇形EAD和扇形FBD的圓心分別為點(diǎn)A、點(diǎn)B,且AB=4,則圖中陰影部分的面積為_____(結(jié)果保留π).14.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點(diǎn)H,如果AH=BC,那么sin∠BAC的值是____.15.如圖,在直角坐標(biāo)平面xOy中,點(diǎn)A坐標(biāo)為,,,AB與x軸交于點(diǎn)C,那么AC:BC的值為______.16.關(guān)于x的不等式組有2個(gè)整數(shù)解,則a的取值范圍是____________.17.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.三、解答題(共7小題,滿分69分)18.(10分)[閱讀]我們定義:如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對(duì)應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對(duì)應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過(guò)的路程為s.當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,試求的值.19.(5分)△ABC在平面直角坐標(biāo)系中的位置如圖所示.畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;將△ABC向右平移6個(gè)單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對(duì)稱?若是,請(qǐng)?jiān)趫D上畫出這條對(duì)稱軸.20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),拋物線的對(duì)稱軸直線x=交x軸于點(diǎn)D.(1)求拋物線的解析式;(2)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo);(3)在(2)的條件下,將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<90°),在旋轉(zhuǎn)過(guò)程中,設(shè)線段FG與拋物線交于點(diǎn)N,在線段GB上是否存在點(diǎn)P,使得以P、N、G為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.21.(10分)某公司銷售一種新型節(jié)能電子小產(chǎn)品,現(xiàn)準(zhǔn)備從國(guó)內(nèi)和國(guó)外兩種銷售方案中選擇一種進(jìn)行銷售:①若只在國(guó)內(nèi)銷售,銷售價(jià)格y(元/件)與月銷量x(件)的函數(shù)關(guān)系式為y=-x+150,成本為20元/件,月利潤(rùn)為W內(nèi)(元);②若只在國(guó)外銷售,銷售價(jià)格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當(dāng)月銷量為x(件)時(shí),每月還需繳納x2元的附加費(fèi),月利潤(rùn)為W外(元).(1)若只在國(guó)內(nèi)銷售,當(dāng)x=1000(件)時(shí),y=(元/件);(2)分別求出W內(nèi)、W外與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);(3)若在國(guó)外銷售月利潤(rùn)的最大值與在國(guó)內(nèi)銷售月利潤(rùn)的最大值相同,求a的值.22.(10分)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D,AB,DC的延長(zhǎng)線交于點(diǎn)E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.23.(12分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過(guò)B,C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),連接CM,將線段MC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(t>0),請(qǐng)解答下列問(wèn)題:(1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;(2)①直接寫出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時(shí)的t的值;②求點(diǎn)M運(yùn)動(dòng)的過(guò)程中線段CD長(zhǎng)度的最小值;(3)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,在直線l上是否存在點(diǎn)P,使得△BDP是等邊三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.24.(14分)已知,關(guān)于x的方程x2+2x-k=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個(gè)方程的兩個(gè)實(shí)數(shù)根,求的值;(3)根據(jù)(2)的結(jié)果你能得出什么結(jié)論?
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】
(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進(jìn)而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過(guò)點(diǎn)P,它的另一條直角邊過(guò)圓心O,直角頂點(diǎn)落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點(diǎn)A,∴OA=AP.∵以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過(guò)點(diǎn)P,它的另一條直角邊過(guò)圓心O,直角頂點(diǎn)落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學(xué)的作法都正確.故選A.【點(diǎn)睛】本題考查了復(fù)雜的作圖,重點(diǎn)是運(yùn)用切線的判定來(lái)說(shuō)明作法的正確性.2、C【解析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.3、A【解析】A.是軸對(duì)稱圖形不是中心對(duì)稱圖形,正確;B.是軸對(duì)稱圖形也是中心對(duì)稱圖形,錯(cuò)誤;C.是中心對(duì)稱圖形不是軸對(duì)稱圖形,錯(cuò)誤;D.是軸對(duì)稱圖形也是中心對(duì)稱圖形,錯(cuò)誤,故選A.【點(diǎn)睛】本題考查軸對(duì)稱圖形與中心對(duì)稱圖形,正確地識(shí)別是解題的關(guān)鍵.4、B【解析】
證明△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)可推導(dǎo)得出AC2=AD?AB,由此即可解決問(wèn)題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、解題的關(guān)鍵是正確尋找相似三角形解決問(wèn)題.5、A【解析】
依據(jù)不等式組至少有兩個(gè)整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進(jìn)而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個(gè).【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個(gè)整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個(gè),故選:A.【點(diǎn)睛】此題考查的是一元一次不等式組的解法和三角形的三邊關(guān)系的運(yùn)用,求不等式組的解集應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.6、A【解析】分析:甲隊(duì)每天修路xm,則乙隊(duì)每天修(x-10)m,因?yàn)榧住⒁覂申?duì)所用的天數(shù)相同,所以,。故選A。7、B【解析】
解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.8、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點(diǎn),∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.9、D【解析】
根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義逐項(xiàng)識(shí)別即可,在平面內(nèi),把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形;如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對(duì)稱圖形.【詳解】解:A.是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不符合題意;B.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故不符合題意;C.是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不符合題意;D.既是軸對(duì)稱圖形又是中心對(duì)稱圖形,故符合題意.故選D.【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的識(shí)別,熟練掌握軸對(duì)稱圖形和中心對(duì)稱圖形的定義是解答本題的關(guān)鍵.10、C【解析】
根據(jù)數(shù)軸上點(diǎn)的位置關(guān)系,可得a,b,c,d的大小,根據(jù)有理數(shù)的運(yùn)算,絕對(duì)值的性質(zhì),可得答案.【詳解】解:由數(shù)軸上點(diǎn)的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合題意;B、bd<0,故B不符合題意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合題意;D、b+c<0,故D不符合題意;故選:C.【點(diǎn)睛】本題考查了有理數(shù)大小的比較、有理數(shù)的運(yùn)算,絕對(duì)值的性質(zhì),熟練掌握相關(guān)的知識(shí)是解題的關(guān)鍵二、填空題(共7小題,每小題3分,滿分21分)11、±8【解析】
根據(jù)比例中項(xiàng)的定義即可求解.【詳解】∵b是a,c的比例中項(xiàng),若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【點(diǎn)睛】此題考查了比例中項(xiàng)的定義,如果作為比例線段的內(nèi)項(xiàng)是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項(xiàng).12、5750【解析】
根據(jù)題意設(shè)甲產(chǎn)品的成本價(jià)格為b元,求出b,可知A原料與B原料的成本和40元,然后設(shè)A種原料成本價(jià)格x元,B種原料成本價(jià)格(40﹣x)元,生產(chǎn)甲產(chǎn)品m袋,乙產(chǎn)品n袋,列出方程組得到xn=20n﹣250,最后設(shè)生產(chǎn)甲乙產(chǎn)品的實(shí)際成本為W元,即可解答【詳解】∵甲產(chǎn)品每袋售價(jià)72元,則利潤(rùn)率為20%.設(shè)甲產(chǎn)品的成本價(jià)格為b元,∴=20%,∴b=60,∴甲產(chǎn)品的成本價(jià)格60元,∴1.5kgA原料與1.5kgB原料的成本和60元,∴A原料與B原料的成本和40元,設(shè)A種原料成本價(jià)格x元,B種原料成本價(jià)格(40﹣x)元,生產(chǎn)甲產(chǎn)品m袋,乙產(chǎn)品n袋,根據(jù)題意得:,∴xn=20n﹣250,設(shè)生產(chǎn)甲乙產(chǎn)品的實(shí)際成本為W元,則有W=60m+40n+xn,∴W=60m+40n+20n﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生產(chǎn)甲乙產(chǎn)品的實(shí)際成本最多為5750元,故答案為5750;【點(diǎn)睛】此題考查不等式和二元一次方程的解,解題關(guān)鍵在于求出甲產(chǎn)品的成本價(jià)格13、4﹣π【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長(zhǎng),繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點(diǎn)D為AB的中點(diǎn),∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì)以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.14、【解析】
過(guò)點(diǎn)B作BD⊥AC于D,設(shè)AH=BC=2x,根據(jù)等腰三角形三線合一的性質(zhì)可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據(jù)三角形的面積列方程求出BD,然后根據(jù)銳角的正弦=對(duì)邊:斜邊求解即可.【詳解】如圖,過(guò)點(diǎn)B作BD⊥AC于D,設(shè)AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據(jù)勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.15、【解析】
過(guò)點(diǎn)A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過(guò)點(diǎn)A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點(diǎn)A坐標(biāo)為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點(diǎn)睛】本題考查三角形相似的證明以及平行線分線段成比例.16、8?a<13;【解析】
首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個(gè)數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍.【詳解】解不等式3x?5>1,得:x>2,解不等式5x?a?12,得:x?,∵不等式組有2個(gè)整數(shù)解,∴其整數(shù)解為3和4,則4?<5,解得:8?a<13,故答案為:8?a<13【點(diǎn)睛】此題考查一元一次不等式組的整數(shù)解,掌握運(yùn)算法則是解題關(guān)鍵17、【解析】分析:過(guò)點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得,;設(shè)AF=DF=x,則FG=,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過(guò)點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設(shè)AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識(shí)來(lái)解決問(wèn)題.三、解答題(共7小題,滿分69分)18、tanA=;綜上所述,當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,的值為或.【解析】
(1)由AC和BD是“對(duì)應(yīng)邊”,可得AC=BD,設(shè)AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當(dāng)點(diǎn)P在BC上時(shí),連接AC,交PQ于點(diǎn)E,延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時(shí),==,∴=;當(dāng)腰AP與它的中線QM相等時(shí),即AP=QM時(shí),QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對(duì)應(yīng)邊”,∴AC=BD,設(shè)AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當(dāng)點(diǎn)P在AB上時(shí),△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當(dāng)點(diǎn)P在BC上時(shí),連接AC,交PQ于點(diǎn)E,延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時(shí),==,∴=;當(dāng)腰AP與它的中線QM相等時(shí),即AP=QM時(shí),QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,的值為或.【點(diǎn)睛】本題是一道相似形綜合運(yùn)用的試題,考查了相似三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等腰直角三角形的性質(zhì)的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,銳角三角形函數(shù)值的運(yùn)用,解答時(shí)靈活運(yùn)用三角函數(shù)值建立方程求解是解答的關(guān)鍵.19、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對(duì)稱圖形,對(duì)稱軸為圖中直線l:x=1,見解析.【解析】
(1)根據(jù)軸對(duì)稱圖形的性質(zhì),找出A、B、C的對(duì)稱點(diǎn)A1、B1、C1,畫出圖形即可;(2)根據(jù)平移的性質(zhì),△ABC向右平移6個(gè)單位,A、B、C三點(diǎn)的橫坐標(biāo)加6,縱坐標(biāo)不變;(1)根據(jù)軸對(duì)稱圖形的性質(zhì)和頂點(diǎn)坐標(biāo),可得其對(duì)稱軸是l:x=1.【詳解】(1)由圖知,A(0,4),B(﹣2,2),C(﹣1,1),∴點(diǎn)A、B、C關(guān)于y軸對(duì)稱的對(duì)稱點(diǎn)為A1(0,4)、B1(2,2)、C1(1,1),連接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6個(gè)單位,∴A、B、C三點(diǎn)的橫坐標(biāo)加6,縱坐標(biāo)不變,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對(duì)稱圖形,對(duì)稱軸為圖中直線l:x=1.【點(diǎn)睛】本題考查了軸對(duì)稱圖形的性質(zhì)和作圖﹣平移變換,作圖時(shí)要先找到圖形的關(guān)鍵點(diǎn),分別把這幾個(gè)關(guān)鍵點(diǎn)按照平移的方向和距離確定對(duì)應(yīng)點(diǎn)后,再順次連接對(duì)應(yīng)點(diǎn)即可得到平移后的圖形.20、(1);(1),E(1,1);(3)存在,P點(diǎn)坐標(biāo)可以為(1+,5)或(3,5).【解析】
(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對(duì)稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點(diǎn)坐標(biāo).(3)設(shè)N點(diǎn)為(n,﹣n1+n+1),1<n<2.過(guò)N作NO⊥x軸于點(diǎn)P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點(diǎn)坐標(biāo).又由△ABC∽△GNP,且時(shí),得n=3或n=﹣2(舍去).求得P點(diǎn)坐標(biāo).【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對(duì)稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點(diǎn)式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時(shí),S四邊形CDBF最大,為.此時(shí),E點(diǎn)坐標(biāo)為(1,1).(3)存在.如圖1,由線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過(guò)N作NO⊥x軸于點(diǎn)P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時(shí)P點(diǎn)坐標(biāo)為(1+,5).當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時(shí)P點(diǎn)坐標(biāo)為(3,5).綜上所述,滿足題意的P點(diǎn)坐標(biāo)可以為,(1+,5),(3,5).【點(diǎn)睛】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.21、(1)140;(2)W內(nèi)=-x2+130x,W外=-x2+(150-a)x;(3)a=1.【解析】試題分析:(1)將x=1000代入函數(shù)關(guān)系式求得y,;(2)根據(jù)等量關(guān)系“利潤(rùn)=銷售額﹣成本”“利潤(rùn)=銷售額﹣成本﹣附加費(fèi)”列出函數(shù)關(guān)系式;(3)對(duì)w內(nèi)函數(shù)的函數(shù)關(guān)系式求得最大值,再求出w外的最大值并令二者相等求得a值.試題解析:(1)x=1000,y=-×1000+150=140;(2)W內(nèi)=(y-1)x=(-x+150-1)x=-x2+130x.W外=(150-a)x-x2=-x2+(150-a)x;(3)W內(nèi)=-x2+130x=-(x-6500)2+2,由W外=-x2+(150-a)x得:W外最大值為:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.經(jīng)檢驗(yàn),a=280不合題意,舍去,∴a=1.考點(diǎn):二次函數(shù)的應(yīng)用.22、(1)證明見解析;(2)【解析】
(1)連接OC,如圖,利用切線的性質(zhì)得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設(shè)⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數(shù)的定義計(jì)算出∠COE=60°,然后根據(jù)扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進(jìn)行計(jì)算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點(diǎn)E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)設(shè)⊙O半徑為r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE=,∴∠COE=60°,∴S陰影=S△COE﹣S扇形COB=?3?3﹣.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡(jiǎn)記作:見切點(diǎn),連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.23、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】
(1)當(dāng)y=0時(shí),﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達(dá)式;(2)分當(dāng)點(diǎn)M在AO上運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)M在OB上運(yùn)動(dòng)時(shí),進(jìn)行討論可求D點(diǎn)坐標(biāo),將D點(diǎn)坐標(biāo)代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點(diǎn)M運(yùn)動(dòng)的過(guò)程中線段CD長(zhǎng)度的最小值;(3)分當(dāng)點(diǎn)M在AO上運(yùn)動(dòng)時(shí),即0<t<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品采購(gòu)管理制度
- 企業(yè)環(huán)境的應(yīng)急預(yù)案
- 幼兒園手工制作活動(dòng)策劃方案(3篇)
- 春節(jié)安全的應(yīng)急預(yù)案范文(35篇)
- 老師工作計(jì)劃11篇
- 高中體育述職報(bào)告5篇
- 高考地理二輪復(fù)習(xí)綜合題專項(xiàng)訓(xùn)練1特征(點(diǎn))描述類含答案
- 第二十三章 數(shù)據(jù)分析 綜合檢測(cè)
- 山西省太原市2024-2025學(xué)年七年級(jí)上學(xué)期期中地理試題(含答案)
- 河南省周口市項(xiàng)城市東街小學(xué)等校2024-2025學(xué)年四年級(jí)上學(xué)期11月期中數(shù)學(xué)試題
- 四大穿刺知識(shí)點(diǎn)考試試題及答案
- DB11-T 1796-2020文物建筑三維信息采集技術(shù)規(guī)程
- 海康威視視頻車位誘導(dǎo)與反向?qū)ぼ囅到y(tǒng)解決方案
- 小學(xué)生日常衛(wèi)生小常識(shí)(課堂PPT)
- 幼兒園大班《風(fēng)箏飛上天》教案
- 寄宿生防火、防盜、人身防護(hù)安全知識(shí)
- 彎管力矩計(jì)算公式
- 《Excel數(shù)據(jù)分析》教案
- 汽車低壓電線束技術(shù)條件
- 水稻常見病蟲害ppt
- 學(xué)生會(huì)考核表(共3頁(yè))
評(píng)論
0/150
提交評(píng)論