版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在如圖所示的正方形網格中,網格線的交點稱為格點,已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰直角三角形,則這樣的點C有()A.6個 B.7個 C.8個 D.9個2.罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結果影響很大.如圖是對某球員罰球訓練時命中情況的統計:下面三個推斷:①當罰球次數是500時,該球員命中次數是411,所以“罰球命中”的概率是0.822;②隨著罰球次數的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③3.的相反數是()A. B.﹣ C.﹣ D.4.我國“神七”在2008年9月26日順利升空,宇航員在27日下午4點30分在距離地球表面423公里的太空中完成了太空行走,這是我國航天事業(yè)的又一歷史性時刻.將423公里用科學記數法表示應為()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×1065.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數為()A.34° B.56° C.66° D.54°6.如圖,點A,B在反比例函數y=1x(x>0)的圖象上,點C,D在反比例函數y=A.4 B.3 C.2 D.37.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°8.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.109.花園甜瓜是樂陵的特色時令水果.甜瓜一上市,水果店的小李就用3000元購進了一批甜瓜,前兩天以高于進價40%的價格共賣出150kg,第三天她發(fā)現市場上甜瓜數量陡增,而自己的甜瓜賣相已不大好,于是果斷地將剩余甜瓜以低于進價20%的價格全部售出,前后一共獲利750元,則小李所進甜瓜的質量為()kg.A.180 B.200 C.240 D.30010.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)二、填空題(共7小題,每小題3分,滿分21分)11.若分式方程的解為正數,則a的取值范圍是______________.12.一個不透明的口袋中有2個紅球,1個黃球,1個白球,每個球除顏色不同外其余均相同.小溪同學從口袋中隨機取出兩個小球,則小溪同學取出的是一個紅球、一個白球的概率為_____.13.已知a1=,a2=,a3=,a4=,a5=,…,則an=_____.(n為正整數).14.已知點、都在反比例函數的圖象上,若,則k的值可以取______寫出一個符合條件的k值即可.15.當__________時,二次函數有最小值___________.16.若3,a,4,5的眾數是4,則這組數據的平均數是_____.17.若a﹣3有平方根,則實數a的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.(1)問題發(fā)現①當θ=0°時,=;②當θ=180°時,=.(2)拓展探究試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決①在旋轉過程中,BE的最大值為;②當△ADE旋轉至B、D、E三點共線時,線段CD的長為.19.(5分)小張同學嘗試運用課堂上學到的方法,自主研究函數y=的圖象與性質.下面是小張同學在研究過程中遇到的幾個問題,現由你來完成:(1)函數y=自變量的取值范圍是;(2)下表列出了y與x的幾組對應值:x…﹣2﹣m﹣﹣12…y…1441…表中m的值是;(3)如圖,在平面直角坐標系xOy中,描出以表中各組對應值為坐標的點,試由描出的點畫出該函數的圖象;(4)結合函數y=的圖象,寫出這個函數的性質:.(只需寫一個)20.(8分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統計,并繪制以下不完整的頻數分布表(圖11-1)和扇形統計圖(圖11-2),根據圖表中的信息解答下列問題:分組
分數段(分)
頻數
A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數和m的值;(2)直接學出該班學生的中考體育成績的中位數落在哪個分數段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現需從這3人中隨機選取2人到八年級進行經驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.21.(10分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.22.(10分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;現甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?23.(12分)解不等式組并寫出它的所有整數解.24.(14分)三輛汽車經過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經過此收費站時,至少有兩輛汽車選擇B通道通過的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據題意,結合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有2個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有4個.故選:C.【點睛】本題考查了等腰三角形的判定;解答本題關鍵是根據題意,畫出符合實際條件的圖形,再利用數學知識來求解.數形結合的思想是數學解題中很重要的解題思想.2、B【解析】
根據圖形和各個小題的說法可以判斷是否正確,從而解答本題【詳解】當罰球次數是500時,該球員命中次數是411,所以此時“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯誤;隨著罰球次數的增加,“罰球命中”的頻率總在0.2附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯誤.故選:B.【點睛】此題考查了頻數和頻率的意義,解題的關鍵在于利用頻率估計概率.3、B【解析】
一個數的相反數就是在這個數前面添上“﹣”號,由此即可求解.【詳解】解:的相反數是﹣.故選:B.【點睛】本題考查了相反數的意義,一個數的相反數就是在這個數前面添上“﹣”號:一個正數的相反數是負數,一個負數的相反數是正數,1的相反數是1.4、C【解析】423公里=423000米=4.23×105米.故選C.5、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.6、B【解析】
首先根據A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據AC//BD//y軸,及反比例函數圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據三角形的面積公式表示出S△OAC,S△ABD的面積,再根據△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.【點睛】:此題考查了反比例函數系數k的幾何意義,以及反比例函數圖象上點的坐標特征,熟練掌握反比例函數k的幾何意義是解本題的關鍵.7、A【解析】
直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.8、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.9、B【解析】
根據題意去設所進烏梅的數量為,根據前后一共獲利元,列出方程,求出x值即可.【詳解】解:設小李所進甜瓜的數量為,根據題意得:,解得:,經檢驗是原方程的解.答:小李所進甜瓜的數量為200kg.故選:B.【點睛】本題考查的是分式方程的應用,解題關鍵在于對等量關系的理解,進而列出方程即可.10、A【解析】
根據位似變換的性質可知,△ODC∽△OBA,相似比是,根據已知數據可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.【點睛】本題考查的是位似變換,掌握位似變換與相似的關系是解題的關鍵,注意位似比與相似比的關系的應用.二、填空題(共7小題,每小題3分,滿分21分)11、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根據題意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案為:a<8,且a≠1.【點睛】分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,根據分式方程解為正數求出a的范圍即可.此題考查了分式方程的解,需注意在任何時候都要考慮分母不為2.12、【解析】
先畫樹狀圖求出所有等可能的結果數,再找出從口袋中隨機摸出2個球,摸到的兩個球是一紅一白的結果數,然后根據概率公式求解.【詳解】解:根據題意畫樹狀圖如下:共有12種等可能的結果數,其中從口袋中隨機摸出2個球,摸到的一個紅球、一個白球的結果數為4,所以從口袋中隨機摸出2個球,則摸到的兩個球是一白一黃的概率為.故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.13、.【解析】
觀察分母的變化為n的1次冪加1、2次冪加1、3次冪加1…,n次冪加1;分子的變化為:3、5、7、9…2n+1.【詳解】解:∵a1=,a2=,a3=,a4=,a5=,…,∴an=,故答案為:.【點睛】本題考查學生通過觀察、歸納、抽象出數列的規(guī)律的能力,要求學生首先分析題意,找到規(guī)律,并進行推導得出答案.14、-1【解析】
利用反比例函數的性質,即可得到反比例函數圖象在第一、三象限,進而得出,據此可得k的取值.【詳解】解:點、都在反比例函數的圖象上,,
在每個象限內,y隨著x的增大而增大,
反比例函數圖象在第一、三象限,
,
的值可以取等,答案不唯一
故答案為:.【點睛】本題考查反比例函數圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數的性質解答.15、15【解析】二次函數配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.16、4【解析】試題分析:先根據眾數的定義求出a的值,再根據平均數的定義列出算式,再進行計算即可.試題解析:∵3,a,4,5的眾數是4,∴a=4,∴這組數據的平均數是(3+4+4+5)÷4=4.考點:1.算術平均數;2.眾數.17、a≥1.【解析】
根據平方根的定義列出不等式計算即可.【詳解】根據題意,得解得:故答案為【點睛】考查平方根的定義,正數有兩個平方根,它們互為相反數,0的平方根是0,負數沒有平方根.三、解答題(共7小題,滿分69分)18、(1)①;(2)無變化,證明見解析;(3)①2+2+1或﹣1.【解析】
(1)①先判斷出DE∥CB,進而得出比例式,代值即可得出結論;②先得出DE∥BC,即可得出,,再用比例的性質即可得出結論;(2)先∠CAD=∠BAE,進而判斷出△ADC∽△AEB即可得出結論;(3)分點D在BE的延長線上和點D在BE上,先利用勾股定理求出BD,再借助(2)結論即可得出CD.【詳解】解:(1)①當θ=0°時,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當θ=180°時,如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當0°≤θ<360°時,的大小沒有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當點E在BA的延長線時,BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當點E在BD上時,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當點D在BE的延長線上時,在Rt△ADB中,AD=,AB=2,根據勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD=﹣1.故答案為+1或﹣1.【點睛】此題是相似形綜合題,主要考查了等腰直角三角形的性質和判定,勾股定理,相似三角形的判定和性質,比例的基本性質及分類討論的數學思想,解(1)的關鍵是得出DE∥BC,解(2)的關鍵是判斷出△ADC∽△AEB,解(3)關鍵是作出圖形求出BD,是一道中等難度的題目.19、(1)x≠0;(2)﹣1;(3)見解析;(4)圖象關于y軸對稱.【解析】
(1)由分母不等于零可得答案;(2)求出y=1時x的值即可得;(3)根據表格中的數據,描點、連線即可得;(4)由函數圖象即可得.【詳解】(1)函數y=的定義域是x≠0,故答案為x≠0;(2)當y=1時,=1,解得:x=1或x=﹣1,∴m=﹣1,故答案為﹣1;(3)如圖所示:(4)圖象關于y軸對稱,故答案為圖象關于y軸對稱.【點睛】本題主要考查反比例函數的圖象與性質,解題的關鍵是掌握反比例函數自變量的取值范圍、函數值的求法、列表描點畫函數圖象及反比例函數的性質.20、(1)50,18;(2)中位數落在51﹣56分數段;(3).【解析】
(1)利用C分數段所占比例以及其頻數求出總數即可,進而得出m的值;(2)利用中位數的定義得出中位數的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數:50人,∴第25和第26個數據的平均數是中位數,∴中位數落在51﹣56分數段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(率)分布表,扇形統計圖,中位數.21、(1);(2)【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進而利用概率公式求出答案.【詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類垃圾分別為A、B、C、D,畫樹狀圖如下:由樹狀圖知,甲、乙投放的垃圾共有16種等可能結果,其中投放的兩袋垃圾同類的有4種結果,所以投放的兩袋垃圾同類的概率為=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 糖尿病模型討論與分析
- 物業(yè)客服部員工培訓
- 露天礦山安全培訓課件經典
- 互聯網平臺會計勞動合同
- 城市綜合體外保溫施工合同
- 生物科技辦公樓施工承包合同
- 山東影劇院建設合同
- 墻紙施工合同幼兒園歡樂世界
- 地下商場建設鉆探施工合同
- 教育信息化項目招投標攻略
- 老舊小區(qū)改造居民意愿調查表改造方案居民滿意度調查表
- 礦熱爐(電爐)運行有渣冶煉熔煉特性、電極插入深度解析與控制方法
- 妊娠晚期促子宮頸成熟與引產指南
- 基金委托募集合作協議
- GB/T 4942-2021旋轉電機整體結構的防護等級(IP代碼)分級
- 醫(yī)院運行與醫(yī)療業(yè)務指標數據統計收集管理規(guī)定
- 風險因素識別與評價表(幕墻工程危險源)
- 腫瘤患者的人文關懷
- 抽象代數復習習題及答案
- 院壓瘡PDCA持續(xù)改進案例報告課件
- 卡通插畫幼兒園國防教育主題班會課程PPT實施課件
評論
0/150
提交評論