外文翻譯-雙速率數(shù)據(jù)采樣系統(tǒng)的仿真大學(xué)論文_第1頁(yè)
外文翻譯-雙速率數(shù)據(jù)采樣系統(tǒng)的仿真大學(xué)論文_第2頁(yè)
外文翻譯-雙速率數(shù)據(jù)采樣系統(tǒng)的仿真大學(xué)論文_第3頁(yè)
外文翻譯-雙速率數(shù)據(jù)采樣系統(tǒng)的仿真大學(xué)論文_第4頁(yè)
外文翻譯-雙速率數(shù)據(jù)采樣系統(tǒng)的仿真大學(xué)論文_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中文2630字Simulationofdual-ratesampled-datasystemAbstract:Thesimulationproblemofadual-ratesystemisstudiedbyapplyingdiscreteliftingtechnology,quicksamplingoperatorandquickholdoperator.Themethodcanachievetheresultthatisclosetothesimulationofcontinuous-timesignal.TheconcretesimulationisstepedandprogrammedwitharealexampleunderMATLABenvironment.Keywords:Dual-ratesampled-datasystem;Discreteliftingtechnology;Quicksamplingoperator;QuickholdoperatorIntroductionSamplingcontrolsystemreferstotheobjectcontrollerforthecontinuousanddigitalsystems.Atpresent,mostcontrolsystemsarecontinuouslychargedbytheobjectunderthecontrolofthecomputerrealizationofdiscretesamplingcontrolsystem.Withthecontinuousimprovementofthesystemrequirements,single-ratesampled-datasystemscannotmeettherequirements,somulti-ratesampled-datasystemsinplace.Multi-ratesamplingcontrolsystemworksinpracticewiththeprospectofawiderangeofpractical,thisisbecause:1)Inthecomplexmulti-variablecontrolsystem,requiresthatallphysicalsignalsinthesamesamplingfrequencyisnotrealistic.2)samplingandtomaintainthehigherfrequency,thebettertheperformanceofthesystem,butthefastA/DandD/Aconversionmeansthatthecostis.Sofordifferentsignalbandwidth,youshoulduseadifferentA/DandD/Aconversionrate,inordertoachieveperformanceandthebestcompromisebetweenprice.3)multi-ratecontrollerisgenerallytime-varyingcontroller,ithasasingle-ratecontrollercannotcomparethemerits.Suchasincreasingthesystemgainmargin,consistentwiththestabilityofthesystemtofacilitatetherealizationofdecentralizedcontrol.Arelativelysimplemulti-ratesampled-datacontrolsystemisdual-ratesampled-datasystems,virtualboxasshowninFigure1.Simulationofthesystemisdefinedas:foragiveninputsignalw,simulationofitscontinuousoutputsignalzprocess.Figure1dual-ratesampled-datasystemswthavirtualsamplerandholderLiterature[4]isgivenasingle-ratesamplingofhigh-precisioncontrolsystemsimulation.Insingle-ratesampled-datasystemsexistinonlyasinglesamplingperiod,thusonlytheapplicationofthesimulationprocessofsomeofthemoresophisticatedtheory,suchasthecontinuoustransferfunctionofasingleratediscrete.Dual-ratesampled-datasystems,becauseoftheexistenceoftwotypesofsamplingperiod,andthecontrollertoovariablecontroller,thusincreasingthedifficultyofthesimulation.

Inthispaper,discretetechnologicalupgrading,thesystemintwodifferentsamplingperiodorganicallylinkedtothecontrollerintoatime-varyingtime-invariantcontroller.Atthesametime,theuseofrapidsamplingandrapidoperatortomaintain,giventhedual-ratesamplingcontrolsystemsimulationmethod.PriorknowledgeFigure1samplersamplingperiodT1=ph,samplingoperatorS:y(k)=Syc(t)=yc(kph),holderofthesamplingperiodT2=qh,maintainoperatorH:uc(kqh+r)=Hu(k),0<r<qh.One:pandqforcoprimepositiveinteger,hasthebasicsamplinginterval.Lsetupfortheleastcommonmultipleofpandq,thenT=lhforT1andT2timesofthesmallestcycleofthepublic.Sop1=l/p,q1=l/q,whileT=lh=p1ph=q1qhsetup.

Gforthegeneralizedplant,thestate-spacerealizationforKdiscretecontrollerfordual-rateshouldbeappropriatetomeetthecausalnatureofthecyclicalandfinite-dimensional.

ForanyT>0,Drspaceforthecontinuousdelayoperator,thatis,Druc(t)=uc(tT);Uspaceforthediscretesteplagoperator;U2forthediscretespaceoperatorstepahead.1Ifthedefinitionof(U2)q1KUp1=Ktosetup,saidKforthe(p,q)-discretecontrollercycle.2IfthedefinitionofGforthesystemtomeettheDrG=GDr,saidtheGfortheT-cyclefortime-varyingsystems.3SimulationAlgorithmSimulationoftheexpressionKisaknowntheorem(p,q)-cycleofdiscretecontrollers,operatorandmaintenanceofsamplingoperatorasmentionedabove,theHKSfortheT-cyclefortime-varyingsystems.SeeFigure1toprovetherelationshipbetweenthesignal,thereareestablishedunderthestylewecanseefromthedefinition2,HKSfortheT-cyclefortime-varyingsystems.HKSisacycleasaresultofT,sothecasewiththesinglerateissimilartoFigure1intherelationshipbetweeninputandoutputsystemscanbeexpressedasOrDual-ratesamplingcontrolsysteminputandoutputchannels,byaddingavirtualsamplerandmaintainfast,andasshowninFigure1,thevirtualfastsamplerandholderofthesamplingperiodT/n.WdisthewtoT/nforthesamplingperiodofthesamplingsignal,whentheinputsignalmphtimeforthesimulation,thereWd=w(kT/n),k=0,1,...,mn/p1zdandtherelationshipbetweenzIbid.Clearly,whenn→∞when,wd=w,zd=z.Tomakethenumberofdiscrete-timesequenceforpositiveinteger,nastheintegermultipleofl.StudyshowninFigure1ofthesimulationsystem,virtualboxcanbedual-ratesamplingcontrolsysteminputandoutputsignalsforthesimulationresults.Figure1zd=Snz,w=Hnwd,itisbythetype(2)WhichG11n,G12n,G21ntocorrespondtothecycleofT/nofthediscretization.Formula(4)isdual-ratesamplingcontrolsystemsimulationexpression.SimulationofthecalculationofexpressionExpressionofdesire(4),firstobtainedG11n,G12n,G21n,SnH,SHn,(I-KSG22H)-1K,etc.value.WhichG11n,G12n,G21ncontinuoustransferfunctionofG11,G12,G21single-cycleT/nofthediscretizationareeasytocalculate.DiscussedbelowSnH,SHn,(I-KSG22H)-1Kcalculations.(1)SnHcalculationFigure2ExpressiongforInputandOutputofSHnFigure2ofthecycleinHnforT/n=lh/n,Sthecycleph,whilex2(0)=x1(0),x2(1)=x1(n/p1),...,x2(m-1)=x1((m-1)n/p1),ItisSHn=(2)SnHcalculationSimilarlyavailableexpressionSnH(3)(I-KSG22H)-1KcalculationBydiscretesamplingandthediscreteoperatortomaintainthedefinitionofoperator,thereareΨ(k)=Φ(kp)Sp2l→l,Ψ=SpΦυ(kq+r)=Φ(k)Hq2l→lυ=HqΦR=0,1,...,q-1SG22H=SrSAG22HhHq=SpG22dHq(5)G22dwhichcanbeseparatedbyasinglerateprocesshbeen.For(I-KSpG22dHq)-1KisstillthecycleofchangeSpG22dHqandK,thispaperdiscreteoperatortoupgradetoturnitintotime-invariantsystems,thespecificprocessasshowninFigure3.Simulationofexpressionatthistime(4)canbeexpressedasFigure4.Enhancedbythediscrete,periodictime-varyinglinkSpG22dHqandKintothetime-invariantLp1SpG22dHqL-1q1andLq1KL-1q1,calculatedasfollows:Lq1KL-1q1calculationIfthedual-ratecontrollerofthestateequationforKWhileLq1KL-1q1stateequationcanbeexpressedasAmongwhichFigure3(I-KSG22H)-1KtoupgradethediscretesignalFigure4(4)simulationindicate,Lp1SpG22dHqL-1q1calculationLemma1forPforthestatevariablesx,thestatemodelfor[A,B,C,D],m,nandsmeetthefollowingrelationshipispositiveinteger.Thesystemstatevariablesforthediscretesamplingoperatorcanbeexpressedasastatemodel.WhichAmongwhichCharacteristicsfunctionXTake,ConclusionsfromtheAppeal,G22dobtainedfromLp1SpG22dHqL-1q1ofthestatespacemodel.Integratedonthesystem,wecanseeinFigure4forthesimulationprocess:mphinputsignalperiod,thenSimulationexampleFigure1forthegeneralizedplantGAndcontrollerKisSamplingperiodT1=2s,T2=3s,p=2,q=3,h=1,p1=3,q1=2,l=6,T=6.Sothatm=6,n,respectively,for4800,7200,9600,wdforunitstepinputsignal.UsingMATLABprogramminglanguage,andthesystemsimulation,theresultsshowninFigure5.Conclusion

Inthispaper,dual-ratesamplingcontrolsystemofthecharacteristicsofdiscreteapplicationstoupgradetheirskills,rapidsamplingandrapidoperatortomaintainoperatortostudythedual-ratesamplingcontrolsystemsimulationmethods,andgivesconcreteexamplesofsimulationstepsandguidelines.Dual-ratecontrollerasaresultofchangingthecontrollertoo,sothedual-ratesampled-datacontrolsystemsimulationtoverifytheaccuracyoftheproblemtobefurtherstudied.Samplingcontrolsystemtechnologyhasundergonemorethanadecadeofdevelopment,butthereisafundamentalproblem.Especiallysincetheuseofupgradedtechnology,samplingcontroltheoryhasenteredanewstageofdevelopment.Becauseitcantakeintoaccounttheperformancebetweenthesamplingmoment,thereforeseemstoenhancethetransformationhasbecomeasamplingcontrolsystemanalysisanddesignoftheonlycorrectway,andtheiruseisalsoexpanding,butintherealdesignwasbroughtouthigherrequirements.Upgradeitstechnologywasoriginallydesignedfortheneedsofrelated,butnotlimitedtotheactualsituationinmanyareasoftheindividual.Thisisthespecialnatureofsampled-datasystems,especiallyinitsstructureonthesignalpath.Samplingcontrolsystemsignalchannelconstitutedbytwoparts,acontinuouschannel,andtheotherissamplingchannel.Samplingcontrolsystemupgrade,itsnormisnotentirelyequivalent.Takingintoaccountthecharacteristicsofthetwo-channelfrequencyresponsemethodproposedcanalsobegiventhesystem'sfrequencyresponseinducedbythetruenorm,willbesampled-datacontrolsystemsanalysisanddesigntherightway.雙速率數(shù)據(jù)采樣系統(tǒng)的仿真摘要:雙速率系統(tǒng)的仿真問題是采用離散提升技術(shù)、快速采樣算子和快速保持算子來研究的。該模型實(shí)現(xiàn)的結(jié)果與連續(xù)信號(hào)非常相近。最后給出具體地仿真步驟,并結(jié)合實(shí)例在MATLAB環(huán)境下編程實(shí)現(xiàn)。關(guān)鍵詞:雙速率數(shù)據(jù)采樣系統(tǒng),離散提升技術(shù),快速采樣算子,快速保持算子1.簡(jiǎn)介采樣控制系統(tǒng)是指連續(xù)和數(shù)字系統(tǒng)的對(duì)象控制器。目前,大多數(shù)的控制系統(tǒng)是繼續(xù)的由計(jì)算機(jī)實(shí)現(xiàn)的采樣控制系統(tǒng)控制器實(shí)現(xiàn)的。隨著對(duì)系統(tǒng)要求的不斷提高,單速率的采樣控制系統(tǒng)變得不能滿足應(yīng)用的要求,因此其地位被混合采樣速率的采樣控制系統(tǒng)所替代。混合采樣速率控制系統(tǒng)在實(shí)際應(yīng)用中能夠滿足于很廣泛的應(yīng)用場(chǎng)合,這是因?yàn)椋?)在復(fù)雜的多變量控制系統(tǒng)中,要求所有的物理量在被采樣的時(shí)候都具備相同的采樣速率是不現(xiàn)實(shí)的事情。2)在對(duì)信號(hào)進(jìn)行采樣的工程中,采樣的頻率越高,系統(tǒng)對(duì)信號(hào)的復(fù)現(xiàn)性能就越好,但是快速的A/D和D/A轉(zhuǎn)換器意味著更高的花費(fèi)。因此,對(duì)于不同的信號(hào)帶寬,,你應(yīng)該使用不同速率的A/D及D/A轉(zhuǎn)換器,進(jìn)而是的系統(tǒng)的功能達(dá)到一個(gè)較高的水平的同時(shí),又不致使系統(tǒng)的花費(fèi)太大。3)多速率控制器一般而言是采樣時(shí)間可變的控制器,這是但速率采樣控制器不能與之相較的優(yōu)點(diǎn)。如增加系統(tǒng)增益裕度,則就要保持系統(tǒng)的穩(wěn)定性從而保證系統(tǒng)離散控制功能的實(shí)現(xiàn)。雙速率采樣控制系統(tǒng)是一個(gè)相對(duì)簡(jiǎn)單的多速率采樣控制系統(tǒng),其系統(tǒng)的框圖如圖1所示。控制系統(tǒng)仿真被定義為:對(duì)于一個(gè)給定的輸入W,對(duì)系統(tǒng)的輸出信號(hào)Z進(jìn)行模擬的過程。圖1帶虛擬采樣器和保持器的雙速率采樣控制系統(tǒng)文獻(xiàn)[4]中給出了一個(gè)高精度的單速率采樣控制系統(tǒng)仿真的樣本。在單速率采樣控制系統(tǒng)中僅存在一種采樣周期,這樣因而其仿真過程只需應(yīng)用一些較成熟的理論。例如單速率連續(xù)傳遞函數(shù)的離散化。對(duì)于雙速率采樣控制系統(tǒng)而言,由于系統(tǒng)中存在兩種不同的采樣周期,并且控制器為時(shí)變控制器,這樣就增加了仿真的難度。本文采用離散提升技術(shù),將系統(tǒng)中兩種不同的采樣周期有機(jī)地聯(lián)系起來,把時(shí)變控制器變?yōu)闀r(shí)不變控制器。同時(shí)采用快速采樣算子和快速保持算子,給出了雙速率采樣控制系統(tǒng)的仿真方法2.知識(shí)背景圖1采樣器的采樣周期T1=ph,采樣控制器S:y(k)=Syc(t)=yc(kph),保持器的采樣周期T2=qh,保持器算子:uc=(kqh+r)=Hu(k),0<r<qh。其中:p和q為互質(zhì)正整數(shù),h為基本采樣時(shí)間間隔。設(shè)l為p和q的最小公倍數(shù),則T=lh為T1和T2的最小公倍周期。令p1=l/p,q1=l/q,則有T=lh=p1ph=q1qh成立。G是廣義被控對(duì)象,其狀態(tài)空間模型為:K是雙速率離散控制器應(yīng)該被適當(dāng)調(diào)整去滿足相應(yīng)的因果性、周期性和有限維性。對(duì)于任意的T>0,Dr為連續(xù)空間上的延遲算子,Druc(t)=uc(tT);U為離散空間上的一步滯后算子;U2為離散空間上的一步超前算子。定義1如果(U2)q1KUp1=K成立,則稱K為(p,q)-周期離散控制器。定義2如果連續(xù)系統(tǒng)G滿足DrG=GDr,則稱G為T-周期連續(xù)時(shí)變系統(tǒng)。3.仿真算法3.1仿真表達(dá)式K是一個(gè)已知的定義(p,q)-周期的離散控制器,采樣算子和保持算子如上所述,則HKS以T為周期的時(shí)變系統(tǒng)。如圖1即可證明信號(hào)之間的關(guān)系,在已知既定的條件下下式成立:我們可以由定義2看到,HKS為T周期的時(shí)變系統(tǒng)。由于HKS的周期是T,因此同單速率系統(tǒng)類似,圖1中輸出與輸入的關(guān)系可以表示為:或者是在雙速率采樣控制系統(tǒng)輸出與輸入通道中,通過增加一個(gè)可見的采樣器且保持快速,像在圖1中顯示的一樣,這個(gè)可見快速采樣器及保持器的采樣周期均為T/n。Wd是w以T/n為采樣周期的采樣信號(hào),當(dāng)輸入信號(hào)的仿真時(shí)間為mph時(shí),有:Wd=w(kT/n),k=0,1,…,mn/p1zd與z的關(guān)系同上。顯然,當(dāng)n→∞時(shí),wd=w,zd=z。為使離散時(shí)間序列的個(gè)數(shù)為正整數(shù),n選為l的整數(shù)倍。研究圖1所示系統(tǒng)的仿真,便可得到虛框中雙速率采樣控制系統(tǒng)連續(xù)輸入輸出信號(hào)的仿真結(jié)果。圖1中的zd=Snz,w=Hnwd,故由式(2)得其中G11n,G12n,G21n為對(duì)應(yīng)于周期T/n的離散化。式(4)即為雙速率采樣控制系統(tǒng)的仿真表達(dá)式。3.2仿真表達(dá)式的計(jì)算欲求表達(dá)式(4),首先要得到G11n,G12n,,G21n,,SnH,,SHn,以及(I-KSG22H)-1K等等變量,G11n,G12n,G21n分別是連續(xù)傳遞函數(shù)G11,G12,G21以T為采樣周期采樣后的離散傳遞函數(shù),均以計(jì)算。下面討論SnH,SHn,(I-KSG22H)-1K的計(jì)算。計(jì)算SnH圖2SHn的輸入與輸出框圖圖2中Hn的周期為T/n=lh/n,S的周期為ph,當(dāng)x2(0)=x1(0),x2(1)=x1(n/p1),...,x2(m-1)=x1((m-1)n/p1),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論