版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市普陀區(qū)上海師大附中2024屆數(shù)學(xué)高二上期末綜合測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知A,B,C三點不共線,O是平面ABC外一點,下列條件中能確定點M與點A,B,C一定共面的是A. B.C. D.2.已知函數(shù),則的值為()A. B.C.0 D.13.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知△ABC的頂點B、C在橢圓+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是()A.2 B.6C.4 D.125.已知是定義在上的函數(shù),其導(dǎo)函數(shù)為,且,且,則不等式的解集為()A. B.C. D.6.某救援隊有5名隊員,其中有1名隊長,1名副隊長,在一次救援中需隨機(jī)分成兩個行動小組,其中一組2名隊員,另一組3名隊員,則正、副隊長不在同一組的概率為()A. B.C. D.7.在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做“等和數(shù)列”,這個數(shù)叫做數(shù)列的公和.已知等和數(shù)列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣38.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.9.已知拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,M是拋物線上一點,過點M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.210.已知雙曲線的左焦點為F,O為坐標(biāo)原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.11.《周髀算經(jīng)》中有這樣一個問題:從冬至起,接下來依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種共十二個節(jié)氣,其日影長依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個節(jié)氣的日影長之和為25.5尺,且前九個節(jié)氣日影長之和為85.5尺,則立春的日影長為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺12.等差數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.27二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)空間向量,且,則___________.14.正方體的棱長為2,點為底面正方形的中心,點在側(cè)面正方形的邊界及其內(nèi)部運(yùn)動,若,則點的軌跡的長度為______15.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)16.設(shè),若,則S=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知圓臺下底面圓的直徑為,是圓上異于、的點,是圓臺上底面圓上的點,且平面平面,,,、分別是、的中點.(1)證明:平面;(2)若直線上平面且過點,試問直線上是否存在點,使直線與平面所成的角和平面與平面的夾角相等?若存在,求出點的所有可能位置;若不存在,請說明理由.18.(12分)如圖,在直三棱柱中,,,,為的中點,點,分別在棱,上,,.(1)求點到直線的距離(2)求平面與平面夾角的余弦值.19.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補(bǔ)種,求需要補(bǔ)種棕櫚樹的概率.20.(12分)圓經(jīng)過兩點,且圓心在直線上.(1)求圓的方程;(2)求圓與圓的公共弦的長.21.(12分)設(shè)橢圓的左、右焦點分別為,,離心率為,短軸長為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)左、右頂點分別為、,點在橢圓上(異于點、),求的值;(3)過點作一條直線與橢圓交于兩點,過作直線的垂線,垂足為.試問:直線與是否交于定點?若是,求出該定點的坐標(biāo),否則說明理由.22.(10分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△的面積S的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】首先利用坐標(biāo)法,排除錯誤選項,然后對符合的選項驗證存在使得,由此得出正確選項.【題目詳解】不妨設(shè).對于A選項,,由于的豎坐標(biāo),故不在平面上,故A選項錯誤.對于B選項,,由于的豎坐標(biāo),故不在平面上,故B選項錯誤.對于C選項,,由于的豎坐標(biāo),故不在平面上,故C選項錯誤.對于D選項,,由于的豎坐標(biāo)為,故在平面上,也即四點共面.下面證明結(jié)論一定成立:由,得,即,故存在,使得成立,也即四點共面.故選:D.【題目點撥】本小題主要考查空間四點共面的證明方法,考查空間向量的線性運(yùn)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.2、B【解題分析】對函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【題目詳解】,則,則,故選:B3、A【解題分析】由正切函數(shù)性質(zhì),應(yīng)用定義法判斷條件間充分、必要關(guān)系.【題目詳解】當(dāng),,則,當(dāng)時,,.∴“,”是“”的充分不必要條件.故選:A4、C【解題分析】根據(jù)題設(shè)條件求出橢圓的長半軸,再借助橢圓定義即可作答.【題目詳解】由橢圓+y2=1知,該橢圓的長半軸,A是橢圓一個焦點,設(shè)另一焦點為,而點在BC邊上,點B,C又在橢圓上,由橢圓定義得,所以的周長故選:C5、B【解題分析】令,再結(jié)合,和已知條件將問題轉(zhuǎn)化為,最后結(jié)合單調(diào)性求解即可.【題目詳解】解:令,則,因為,所以,即函數(shù)為上的增函數(shù),因為,不等式可化為,所以,故不等式的解集為故選:B6、C【解題分析】求出基本事件總數(shù)與正、副隊長不在同一組的基本事件個數(shù),即可求出答案.【題目詳解】基本事件總數(shù)為正、副隊長不在同一組的基本事件個數(shù)為故正、副隊長不在同一組的概率為.故選:C.7、C【解題分析】利用已知即可求得,再利用已知可得:,問題得解【題目詳解】解:根據(jù)題意,等和數(shù)列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【題目點撥】本題主要考查了新概念知識,考查理解能力及轉(zhuǎn)化能力,還考查了數(shù)列的周期性,屬于中檔題8、C【解題分析】如圖由題可得,進(jìn)而可得,即求.【題目詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.9、C【解題分析】根據(jù)正三角形的性質(zhì),結(jié)合拋物線的性質(zhì)進(jìn)行求解即可.【題目詳解】如圖所示:準(zhǔn)線l與橫軸的交點為,由拋物線的性質(zhì)可知:,因為若△MNF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C10、C【解題分析】由題意可得且,從而求出點的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【題目詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設(shè)點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C11、B【解題分析】設(shè)影長依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項公式及前項和公式求出首項和公差,即可得出答案.【題目詳解】解:設(shè)影長依次成等差數(shù)列,公差為,則,前9項之和,即,解得,所以立春的日影長為.故選:B.12、B【解題分析】根據(jù)等差數(shù)列的前項和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【題目詳解】因為為等差數(shù)列的前n項和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】根據(jù),由求解.【題目詳解】因為向量,且,所以,即,解得.故答案為:114、【解題分析】取中點,利用線面垂直的判定方法可證得平面,由此可確定點軌跡為,再計算即可.【題目詳解】取中點,連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側(cè)面的邊界及其內(nèi)部運(yùn)動,點軌跡為線段;故答案為:.15、##1.5【解題分析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,,由余弦定理可得,向量在向量上投影向量為,化簡可得答案.【題目詳解】因為,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點的對角線,如圖,即,因為,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,即.故答案為:.16、1007【解題分析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【題目詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在,點與點重合.【解題分析】(1)證明出,利用面面垂直的性質(zhì)可證得結(jié)論成立;(2)以為坐標(biāo)原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),分析可知,設(shè)點,利用空間向量法結(jié)合同角三角函數(shù)的基本關(guān)系可得出關(guān)于的方程,解出的值,即可得出結(jié)論.【小問1詳解】證明:因為為圓的一條直徑,且是圓上異于、的點,故,又因平面平面,平面平面,平面,所以平面.【小問2詳解】解:存在,理由如下:如圖,以為坐標(biāo)原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標(biāo)系,易知軸在平面內(nèi),則,,,,,,由直線平面且過點,以及平面,得,設(shè),則,,,設(shè)平面的法向量為,則則,即,取,得,易知平面的法向量,設(shè)直線與平面所成的角為,平面與平面的夾角為,則,,由,得,即,解得,所以當(dāng)點與點重合時,直線與平面所成的角和平面與平面的夾角相等.18、(1);(2).【解題分析】(1)由直棱柱的性質(zhì)及勾股定理求出△各邊長,應(yīng)用余弦定理求,進(jìn)而可得其正弦值,再求邊上的高即可.(2)以為原點,,,所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系,然后求出兩個平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設(shè),,,,由直棱柱性質(zhì)及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點,,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系易知:,,,則,因為平面,所以平面的一個法向量為設(shè)平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為19、(1),分布列見解析;(2).【解題分析】(1)根據(jù)二項分布知識即可求解;(2)將補(bǔ)種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補(bǔ)種棕櫚樹”為事件A,由(1)得,,所以需要補(bǔ)種棕櫚樹的概率為.20、(1)(2)【解題分析】(1)設(shè)圓的方程為,代入所過的點后可求,從而可求圓的方程.(2)利用兩圓的方程可求公共弦的方程,利用垂徑定理可求公共弦的弦長.【小問1詳解】設(shè)圓的方程為,,,所以圓的方程為;【小問2詳解】由圓的方程和圓的方程可得公共弦的方程為:,整理得到:,到公共弦距離為,故公共弦的弦長為:.21、(1);(2);(3)是,.【解題分析】(1)由題意,列出所滿足的等量關(guān)系式,結(jié)合橢圓中的關(guān)系,求得,從而求得橢圓的方程;(2)寫出,設(shè),利用斜率坐標(biāo)公式求得兩直線斜率,結(jié)合點在橢圓上,得出,從而求得結(jié)果;(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,結(jié)合韋達(dá)定理,得到,結(jié)合直線的方程,得到直線所過的定點坐標(biāo).【題目詳解】(1)由題意可知,,又,所以,所以橢圓的標(biāo)準(zhǔn)方程為:.(2),設(shè),因為點在橢圓上,所以,,又,.(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,所以,所以,又直線的方程為:,令,則,所以直線恒過,同理,直線恒過,即直線與交于定點.【題目點撥】思路點睛:該題考查是有關(guān)橢圓的問題,解題思路如下:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版米廠水稻種植與電商平臺合作銷售合同4篇
- 2025年度智慧城市基礎(chǔ)設(shè)施承包安裝服務(wù)協(xié)議4篇
- 2025年度房地產(chǎn)交易會參展商服務(wù)保障協(xié)議3篇
- 2025版1A13365國際貿(mào)易實務(wù)操作手冊授權(quán)合同3篇
- 2024-2030年中國耐磨陶瓷涂料行業(yè)市場深度分析及發(fā)展趨勢預(yù)測報告
- 二零二五版海外科技園區(qū)勞務(wù)派遣與研發(fā)支持協(xié)議2篇
- 2025年房屋代持合同樣本與資產(chǎn)評估協(xié)議4篇
- 個性化私人借貸合同(2024版)版B版
- 2025版國家級屠宰場高品質(zhì)牛肉供貨合同范本下載3篇
- 2025年離職后研發(fā)成果保密及競業(yè)限制協(xié)議
- 中國成人暴發(fā)性心肌炎診斷和治療指南(2023版)解讀
- 新生兒低血糖課件
- 自動上下料機(jī)械手的設(shè)計研究
- 電化學(xué)儲能電站安全規(guī)程
- 幼兒園學(xué)習(xí)使用人民幣教案教案
- 2023年浙江省紹興市中考科學(xué)真題(解析版)
- 語言學(xué)概論全套教學(xué)課件
- 大數(shù)據(jù)與人工智能概論
- 《史記》上冊注音版
- 2018年湖北省武漢市中考數(shù)學(xué)試卷含解析
- 《腎臟的結(jié)構(gòu)和功能》課件
評論
0/150
提交評論