山東省濟省實驗學校2024屆高二上數(shù)學期末檢測試題含解析_第1頁
山東省濟省實驗學校2024屆高二上數(shù)學期末檢測試題含解析_第2頁
山東省濟省實驗學校2024屆高二上數(shù)學期末檢測試題含解析_第3頁
山東省濟省實驗學校2024屆高二上數(shù)學期末檢測試題含解析_第4頁
山東省濟省實驗學校2024屆高二上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省濟省實驗學校2024屆高二上數(shù)學期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線x+y﹣1=0被圓(x+1)2+y2=3截得的弦長等于()A. B.2C.2 D.42.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離3.阿波羅尼斯約公元前年證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)且的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點A,B間的距離為2,動點P與A,B距離之比滿足:,當P、A、B三點不共線時,面積的最大值是()A. B.2C. D.4.甲、乙兩名射擊運動員進行比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,則兩人各射擊一次恰有一人中靶的概率為()A.0.26 B.0.28C.0.72 D.0.985.在等差數(shù)列中,為其前n項和,,則()A.55 B.65C.15 D.606.已知,若,則的取值范圍為()A. B.C. D.7.如圖是拋物線拱形橋,當水面在時,拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.8.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.9.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關(guān)聯(lián),蘊含著中華文化的豐富內(nèi)涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.3610.已知實數(shù)x,y滿足,則的最大值為()A. B.C.2 D.111.直線在軸上的截距為()A.3 B.C. D.12.已知一個圓錐體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若平面內(nèi)兩條直線,平行,則實數(shù)______14.參加數(shù)學興趣小組的小何同學在打籃球時,發(fā)現(xiàn)當籃球放在地面上時,籃球的斜上方燈泡照過來的光線使得籃球在地面上留下的影子有點像數(shù)學課堂上學過的橢圓,但他自己還是不太確定這個想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問題的,而且通過學習,他還確定地面和籃球的接觸點(切點)就是影子橢圓的焦點.他在家里做了個探究實驗:如圖所示,桌面上有一個籃球,若籃球的半徑為個單位長度,在球的右上方有一個燈泡(當成質(zhì)點),燈泡與桌面的距離為個單位長度,燈泡垂直照射在平面的點為,影子橢圓的右頂點到點的距離為個單位長度,則這個影子橢圓的離心率______.15.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.16.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數(shù)的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側(cè)面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.18.(12分)某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是、、、.(1)估計該班本次測試的平均分;(2)在、中按分層抽樣的方法抽取個數(shù)據(jù),再從這個數(shù)據(jù)中任抽取個,求抽出個中至少有個成績在中的概率.19.(12分)新冠疫情下,有一學校推出了食堂監(jiān)管力度的評價與食品質(zhì)量的評價系統(tǒng),每項評價只有合格和不合格兩個選項,師生可以隨時進行評價,某工作人員利用隨機抽樣的方法抽取了200位師生的信息,發(fā)現(xiàn)對監(jiān)管力度滿意的占75%,對食品質(zhì)量滿意的占60%,其中對監(jiān)管力度和食品質(zhì)量都滿意的有80人.(1)完成列聯(lián)表,試問:是否有99%的把握判斷監(jiān)管力度與食品質(zhì)量有關(guān)聯(lián)?監(jiān)督力度情況食品質(zhì)量情況對監(jiān)督力度滿意對監(jiān)督力度不滿意總計對食品質(zhì)量滿意80對食品質(zhì)量不滿意總計200(2)為了改進工作作風,針對抽取的200位師生,對監(jiān)管力度不滿意的人抽取3位征求意見,用X表示3人中對監(jiān)管力度與食品質(zhì)量都不滿意的人數(shù),求X的分布列與均值.參考公式:,其中.參考數(shù)據(jù):①當時,有90%的把握判斷變量A、B有關(guān)聯(lián);②當時,有95%的把握判斷變量A、B有關(guān)聯(lián);③當時,有99%的把握判斷變量A、B有關(guān)聯(lián).20.(12分)在等差數(shù)列中,,前10項和(1)求列的通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和21.(12分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個零點,且最小值為.①求證:;②當且僅當a在什么范圍內(nèi)時,函數(shù)在區(qū)間上存在最小值?(2)若任意實數(shù)t,在閉區(qū)間上總存在兩實數(shù)m,n,使得成立,求實數(shù)a的取值范圍.22.(10分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】如圖,圓(x+1)2+y2=3的圓心為M(?1,0),圓半徑|AM|=,圓心M(?1,0)到直線x+y?1=0的距離:|,∴直線x+y?1=0被圓(x+1)2+y2=3截得的弦長:.故選B.點睛:本題考查圓的標準方程以及直線和圓的位置關(guān)系.判斷直線與圓的位置關(guān)系一般有兩種方法:1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方程組轉(zhuǎn)化為一元二次方程,該方程解的情況即對應直線與圓的位置關(guān)系.這種方法具有一般性,適合于判斷直線與圓錐曲線的位置關(guān)系,但是計算量較大.2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關(guān)系.這種方法的特點是計算量較?。斨本€與圓相交時,可利用垂徑定理得出圓心到直線的距離,弦長和半徑的勾股關(guān)系.2、A【解題分析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進行判斷即可.【題目詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因為兩圓的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A3、C【解題分析】根據(jù)給定條件建立平面直角坐標系,求出點P的軌跡方程,探求點P與直線AB的最大距離即可計算作答.【題目詳解】依題意,以線段AB的中點為原點,直線AB為x軸建立平面直角坐標系,如圖,則,,設(shè),因,則,化簡整理得:,因此,點P的軌跡是以點為圓心,為半徑的圓,點P不在x軸上時,與點A,B可構(gòu)成三角形,當點P到直線(軸)的距離最大時,的面積最大,顯然,點P到軸的最大距離為,此時,,所以面積的最大值是故選:C4、A【解題分析】依據(jù)獨立事件同時發(fā)生的概率即可求得甲乙兩人各射擊一次恰有一人中靶的概率.【題目詳解】記甲中靶為事件A,乙中靶為事件B,則甲乙兩人各射擊一次恰有一人中靶,包含甲中乙不中和甲不中乙中兩種情況,則甲乙兩人各射擊一次恰有一人中靶的概率為故選:A5、B【解題分析】根據(jù)等差數(shù)列求和公式結(jié)合等差數(shù)列的性質(zhì)即可求得.【題目詳解】解析:因為為等差數(shù)列,所以,即,.故選:B6、C【解題分析】根據(jù)題意,由為原點到直線上點的距離的平方,再根據(jù)點到直線垂線段最短,即可求得范圍.【題目詳解】由,,視為原點到直線上點的距離的平方,根據(jù)點到直線垂線段最短,可得,所有的取值范圍為,故選:C.7、C【解題分析】先建立直角坐標系,設(shè)拋物線方程為x2=my,將點坐標代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【題目詳解】解:如圖建立直角坐標系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C8、D【解題分析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結(jié)合橢圓焦點的位置可得出頂點的軌跡方程.【題目詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.9、B【解題分析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【題目詳解】甲最終獲得冠軍的概率,故選:B.10、A【解題分析】作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【題目詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當直線過直線的交點時取最大值,即故選:11、A【解題分析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【題目詳解】由,可得,則直線在軸上的截距為3.故選:A12、B【解題分析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【題目詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、-1或2【解題分析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【題目詳解】∵,∴,解得或,經(jīng)驗證都符合題意,故答案為:-1或214、【解題分析】建立平面直角坐標系,解得圖中N、Q的橫坐標,列方程組即可求得橢圓的a、c,進而求得橢圓的離心率.【題目詳解】以A為原點建立平面直角坐標系,則,,直線PR的方程為設(shè),由到直線PR的距離為1,得,解之得或(舍)則,又設(shè)直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【題目點撥】數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。15、2【解題分析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關(guān)系,即可得到的值【題目詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:16、【解題分析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!绢}目詳解】∵為真,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2).【解題分析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)作圓柱的母線,由平面幾何知識可得四邊形為平行四邊形,利用等體積法可求得,由幾何體的體積,可求得答案.【小問1詳解】證明:∵是直徑,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小問2詳解】如圖,作圓柱的母線,則,且,∴四邊形是平行四邊形,∴,且①又依題知,,,為底面圓的四等分點,∴,且②由①②知四邊形為平行四邊形,得,且,∴,∵到面的距離為,∴,所以幾何體的體積.18、(1);(2).【解題分析】(1)將每個矩形底邊的中點值乘以對應矩形的面積,再將所得結(jié)果全部相加可得的值;(2)分析可知,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,列舉出所有的基本事件,并確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由頻率分布直方圖可得.【小問2詳解】解:因為數(shù)學成績在、內(nèi)的頻率分別為、,所以,所抽取的個數(shù)據(jù)中,成績在內(nèi)的有個,分別記為、、、,成績在內(nèi)的有個,分別記為、,從這個數(shù)據(jù)中,任取抽取個,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中,事件“抽出個中至少有個成績在中”所包含的基本事件有:、、、、、、、、,共個,故所求概率為.19、(1)列聯(lián)表見解析,有99%的把握判斷監(jiān)管力度與食品質(zhì)量有關(guān)聯(lián);(2)X的分布列見解析,X的期望為【解題分析】(1)根據(jù)給定條件完善列聯(lián)表,再計算的觀測值并結(jié)合給定數(shù)據(jù)即可作答.(2)求出X的可能值及各個值對應的概率列出X的分布列,再計算期望作答.【小問1詳解】對監(jiān)管力度滿意的有,對食品質(zhì)量滿意的有,列聯(lián)表如下:對監(jiān)督力度滿意對監(jiān)督力度不滿意總計對食品質(zhì)量滿意8040120對食品質(zhì)量不滿意701080總計15050200則的觀測值為:,所以有99%的把握判斷監(jiān)管力度與食品質(zhì)量有關(guān)聯(lián).【小問2詳解】由(1)及已知得,X的所有可能值為:0,1,2,3,,,,,X的分布列為:X0123PX的期望為:.【題目點撥】易錯點睛:獨立性檢驗得出的結(jié)論是帶有概率性質(zhì)的,不可對某個問題下確定性結(jié)論,否則就可能對統(tǒng)計計算的結(jié)果作出錯誤的解釋20、(1);(2)347.【解題分析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【題目詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為21、(1)①證明見解析;②(2)【解題分析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有成立,設(shè)﹐結(jié)合二次函數(shù)的圖象與性質(zhì),分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因為最小值為,可得,即,因為,所以根據(jù)求根公式得,所以.②由①知,區(qū)間因為,對稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因為,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實數(shù),使得成立,則在區(qū)間上,有成立,設(shè)﹐函數(shù)對稱軸為①當即時,在上單調(diào)減,,此時;②當即時,,此時③當即時,,此時;④當即時,,此時;綜合①②③④得,且最小值為,因為對任意實數(shù)t,都有,所以只需,即,所以實數(shù)a的取值范圍.22、(1)證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論