管理科學決策分析_第1頁
管理科學決策分析_第2頁
管理科學決策分析_第3頁
管理科學決策分析_第4頁
管理科學決策分析_第5頁
已閱讀5頁,還剩52頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

管理科學決策分析Chapter12-DecisionAnalysis1第一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

2ComponentsofDecisionMakingDecisionMakingwithoutProbabilitiesDecisionMakingwithProbabilitiesDecisionAnalysiswithAdditionalInformationUtilityChapterTopics第二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

3Table12.1PayoffTableAstateofnatureisanactualeventthatmayoccurinthefuture.Apayofftableisameansoforganizingadecisionsituation,presentingthepayoffsfromdifferentdecisionsgiventhevariousstatesofnature.DecisionAnalysisComponentsofDecisionMaking第三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

4Decisionsituation:Decision-MakingCriteria:maximax,maximin,minimax,minimaxregret,Hurwicz,andequallikelihood

Table12.2PayoffTablefortheRealEstateInvestmentsDecisionAnalysisDecisionMakingwithoutProbabilities第四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

5Table12.3PayoffTableIllustratingaMaximaxDecisionInthemaximaxcriterionthedecisionmakerselectsthedecisionthatwillresultinthemaximumofmaximumpayoffs;anoptimisticcriterion.DecisionMakingwithoutProbabilitiesMaximaxCriterion第五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

6Table12.4PayoffTableIllustratingaMaximinDecisionInthemaximincriterionthedecisionmakerselectsthedecisionthatwillreflectthemaximumoftheminimumpayoffs;apessimisticcriterion.DecisionMakingwithoutProbabilitiesMaximinCriterion第六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

7Table12.6

RegretTableIllustratingtheMinimaxRegretDecisionRegretisthedifferencebetweenthepayofffromthebestdecisionandallotherdecisionpayoffs.Thedecisionmakerattemptstoavoidregretbyselectingthedecisionalternativethatminimizesthemaximumregret.DecisionMakingwithoutProbabilitiesMinimaxRegretCriterion第七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

8TheHurwiczcriterionisacompromisebetweenthemaximaxandmaximincriterion.Acoefficientofoptimism,,isameasureofthedecisionmaker’soptimism.TheHurwiczcriterionmultipliesthebestpayoffbyandtheworstpayoffby1-.,foreachdecision,andthebestresultisselected.

Decision

Values

Apartmentbuilding$50,000(.4)+30,000(.6)=38,000 Officebuilding$100,000(.4)-40,000(.6)=16,000 Warehouse$30,000(.4)+10,000(.6)=18,000DecisionMakingwithoutProbabilitiesHurwiczCriterion第八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

9Theequallikelihood(orLaplace)criterionmultipliesthedecisionpayoffforeachstateofnaturebyanequalweight,thusassumingthatthestatesofnatureareequallylikelytooccur.

Decision

Values

Apartmentbuilding$50,000(.5)+30,000(.5)=40,000 Officebuilding$100,000(.5)-40,000(.5)=30,000 Warehouse$30,000(.5)+10,000(.5)=20,000DecisionMakingwithoutProbabilitiesEqualLikelihoodCriterion第九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

10Adominantdecisionisonethathasabetterpayoffthananotherdecisionundereachstateofnature.Theappropriatecriterionisdependentonthe“risk”personalityandphilosophyofthedecisionmaker.

Criterion

Decision(Purchase) Maximax Officebuilding Maximin Apartmentbuilding Minimaxregret Apartmentbuilding Hurwicz Apartmentbuilding Equallikelihood ApartmentbuildingDecisionMakingwithoutProbabilitiesSummaryofCriteriaResults第十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

11Exhibit12.1DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(1of3)第十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

12Exhibit12.2DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(2of3)第十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

13Exhibit12.3DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(3of3)第十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

14Expectedvalueiscomputedbymultiplyingeachdecisionoutcomeundereachstateofnaturebytheprobabilityofitsoccurrence. EV(Apartment)=$50,000(.6)+30,000(.4)=42,000 EV(Office)=$100,000(.6)-40,000(.4)=44,000 EV(Warehouse)=$30,000(.6)+10,000(.4)=22,000Table12.7PayofftablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedValue第十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

15Theexpectedopportunitylossistheexpectedvalueoftheregretforeachdecision.Theexpectedvalueandexpectedopportunitylosscriterionresultinthesamedecision.

EOL(Apartment)=$50,000(.6)+0(.4)=30,000 EOL(Office)=$0(.6)+70,000(.4)=28,000 EOL(Warehouse)=$70,000(.6)+20,000(.4)=50,000Table12.8Regret(OpportunityLoss)TablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedOpportunityLoss第十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

16Exhibit12.4ExpectedValueProblemsSolutionwithQMforWindows第十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

17Exhibit12.5ExpectedValueProblemsSolutionwithExcelandExcelQM(1of2)第十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

18Exhibit12.6ExpectedValueProblemsSolutionwithExcelandExcelQM(2of2)第十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

19Theexpectedvalueofperfectinformation(EVPI)isthemaximumamountadecisionmakerwouldpayforadditionalinformation.EVPIequalstheexpectedvaluegivenperfectinformationminustheexpectedvaluewithoutperfectinformation.EVPIequalstheexpectedopportunityloss(EOL)forthebestdecision.DecisionMakingwithProbabilitiesExpectedValueofPerfectInformation第十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

20Table12.9PayoffTablewithDecisions,GivenPerfectInformationDecisionMakingwithProbabilitiesEVPIExample(1of2)第二十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

21Decisionwithperfectinformation: $100,000(.60)+30,000(.40)=$72,000Decisionwithoutperfectinformation: EV(office)=$100,000(.60)-40,000(.40)=$44,000

EVPI=$72,000-44,000=$28,000 EOL(office)=$0(.60)+70,000(.4)=$28,000DecisionMakingwithProbabilitiesEVPIExample(2of2)第二十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

22Exhibit12.7DecisionMakingwithProbabilitiesEVPIwithQMforWindows第二十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

23Adecisiontreeisadiagramconsistingofdecisionnodes(representedassquares),probabilitynodes(circles),anddecisionalternatives(branches). Table12.10PayoffTableforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(1of4)第二十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

24Figure12.1DecisionTreeforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(2of4)第二十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

25Theexpectedvalueiscomputedateachprobabilitynode: EV(node2)=.60($50,000)+.40(30,000)=$42,000 EV(node3)=.60($100,000)+.40(-40,000)=$44,000 EV(node4)=.60($30,000)+.40(10,000)=$22,000Brancheswiththegreatestexpectedvalueareselected.DecisionMakingwithProbabilitiesDecisionTrees(3of4)第二十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

26Figure12.2DecisionTreewithExpectedValueatProbabilityNodesDecisionMakingwithProbabilitiesDecisionTrees(4of4)第二十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

27Exhibit12.8DecisionMakingwithProbabilitiesDecisionTreeswithQMforWindows第二十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

28Exhibit12.9DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(1of4)第二十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

29Exhibit12.10DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(2of4)第二十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

30Exhibit12.11DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(3of4)第三十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

31Exhibit12.12DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(4of4)第三十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

32DecisionMakingwithProbabilitiesSequentialDecisionTrees(1of4)Asequentialdecisiontreeisusedtoillustrateasituationrequiringaseriesofdecisions.Usedwhereapayofftable,limitedtoasingledecision,cannotbeused.Realestateinvestmentexamplemodifiedtoencompassaten-yearperiodinwhichseveraldecisionsmustbemade:

第三十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

33Figure12.3SequentialDecisionTreeDecisionMakingwithProbabilitiesSequentialDecisionTrees(2of4)第三十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

34DecisionMakingwithProbabilitiesSequentialDecisionTrees(3of4)Decisionistopurchaseland;highestnetexpectedvalue($1,160,000).Payoffofthedecisionis$1,160,000.

第三十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

35Figure12.4SequentialDecisionTreewithNodalExpectedValuesDecisionMakingwithProbabilitiesSequentialDecisionTrees(4of4)第三十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

36Exhibit12.13SequentialDecisionTreeAnalysisSolutionwithQMforWindows第三十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

37Exhibit12.14SequentialDecisionTreeAnalysisSolutionwithExcelandTreePlan第三十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

38Bayesiananalysisusesadditionalinformationtoalterthemarginalprobabilityoftheoccurrenceofanevent.Inrealestateinvestmentexample,usingexpectedvaluecriterion,bestdecisionwastopurchaseofficebuildingwithexpectedvalueof$444,000,andEVPIof$28,000.

Table12.11PayoffTablefortheRealEstateInvestmentExampleDecisionAnalysiswithAdditionalInformationBayesianAnalysis(1of3)第三十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

39Aconditionalprobabilityistheprobabilitythataneventwilloccurgiventhatanothereventhasalreadyoccurred.Economicanalystprovidesadditionalinformationforrealestateinvestmentdecision,formingconditionalprobabilities: g=goodeconomicconditions p=pooreconomicconditions P=positiveeconomicreport N=negativeeconomicreport P(Pg)=.80 P(NG)=.20 P(Pp)=.10 P(Np)=.90

DecisionAnalysiswithAdditionalInformationBayesianAnalysis(2of3)第三十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

40Aposteriaprobabilityisthealteredmarginalprobabilityofaneventbasedonadditionalinformation.Priorprobabilitiesforgoodorpooreconomicconditionsinrealestatedecision: P(g)=.60;P(p)=.40PosteriaprobabilitiesbyBayes’rule: (gP)=P(PG)P(g)/[P(Pg)P(g)+P(Pp)P(p)] =(.80)(.60)/[(.80)(.60)+(.10)(.40)]=.923Posteria(revised)probabilitiesfordecision: P(gN)=.250 P(pP)=.077 P(pN)=.750DecisionAnalysiswithAdditionalInformationBayesianAnalysis(3of3)第四十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

41DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(1of4)Decisiontreewithposteriorprobabilitiesdifferfromearlierversionsinthat: Twonewbranchesatbeginningoftreerepresentreport outcomes. Probabilitiesofeachstateofnatureareposterior probabilitiesfromBayes’rule.第四十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

42Figure12.5DecisionTreewithPosteriorProbabilities

DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(2of4)第四十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

43DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(3of4)EV(apartmentbuilding)=$50,000(.923)+30,000(.077) =$48,460EV(strategy)=$89,220(.52)+35,000(.48)=$63,194第四十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

44Figure12.6DecisionTreeAnalysisDecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(4of4)第四十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

45Table12.12ComputationofPosteriorProbabilitiesDecisionAnalysiswithAdditionalInformationComputingPosteriorProbabilitieswithTables第四十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

46Theexpectedvalueofsampleinformation(EVSI)isthedifferencebetweentheexpectedvaluewithandwithoutinformation:Forexampleproblem,EVSI=$63,194-44,000=$19,194Theefficiencyofsampleinformationistheratiooftheexpectedvalueofsampleinformationtotheexpectedvalueofperfectinformation:efficiency=EVSI/EVPI=$19,194/28,000=.68DecisionAnalysiswithAdditionalInformationExpectedValueofSampleInformation第四十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

47Table12.13PayoffTableforAutoInsuranceExampleDecisionAnalysiswithAdditionalInformationUtility(1of2)第四十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

48ExpectedCost(insurance)=.992($500)+.008(500)=$500ExpectedCost(noinsurance)=.992($0)+.008(10,000)=$80Decisionshouldbedonotpurchaseinsurance,butpeoplealmostalwaysdopurchaseinsurance.Utilityisameasureofpersonalsatisfactionderivedfrommoney.Utilesareunitsofsubjectivemeasuresofutility.Riskavertersforgoahighexpectedvaluetoavoidalow-probabilitydisaster.Risktakerstakeachanceforabonanzaonaverylow-probabilityeventinlieuofasurething.DecisionAnalysiswithAdditionalInformationUtility(2of2)第四十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

49DecisionAnalysisExampleProblemSolution(1of9)第四十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

50DecisionAnalysisExampleProblemSolution(2of9)Determinethebestdecisionwithoutprobabilitiesusingthe5criteriaofthechapter.Determinebestdecisionwithprobabilitiesassuming.70probabilityofgoodconditions,.30ofpoorconditions.Useexpectedvalueandexpectedopportunitylosscriteria.Computeexpectedvalueofperfectinformation.Developadecisiontreewithexpectedvalueatthenodes.Givenfollowing,P(Pg)=.70,P(Ng)=.30,P(Pp)=20,P(Np)=.80,determineposteriaprobabilitiesusingBayes’rule.Performadecisiontreeanalysisusingtheposteriorprobabilityobtainedinparte.第五十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

51Step1(parta):Determinedecisionswithoutprobabilities.MaximaxDecision:Maintainstatusquo

Decisions

MaximumPayoffs Expand $800,000 Statusquo 1,300,000(maximum) Sell 320,000MaximinDecision:Expand

Decisions

MinimumPayoffs Expand $500,000(maximum) Statusquo -150,000 Sell 320,000DecisionAnalysisExampleProblemSolution(3of9)第五十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

52MinimaxRegretDecision:Expand

Decisions

MaximumRegrets Expand $500,000(minimum) Statusquo 650,000 Sell 980,000Hurwicz(=.3)Decision:Expand Expand $800,000(.3)+500,000(.7)=$590,000 Statusquo $1,300,000(.3)-150,000(.7)=$285,000 Sell $320,000(.3)+320,000(.7)=$320,000DecisionAnalysisExampleProblemSolution(4of9)第五十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis

53EqualLikelihoodDecision:Expand Ex

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論