版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
管理科學決策分析Chapter12-DecisionAnalysis1第一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
2ComponentsofDecisionMakingDecisionMakingwithoutProbabilitiesDecisionMakingwithProbabilitiesDecisionAnalysiswithAdditionalInformationUtilityChapterTopics第二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
3Table12.1PayoffTableAstateofnatureisanactualeventthatmayoccurinthefuture.Apayofftableisameansoforganizingadecisionsituation,presentingthepayoffsfromdifferentdecisionsgiventhevariousstatesofnature.DecisionAnalysisComponentsofDecisionMaking第三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
4Decisionsituation:Decision-MakingCriteria:maximax,maximin,minimax,minimaxregret,Hurwicz,andequallikelihood
Table12.2PayoffTablefortheRealEstateInvestmentsDecisionAnalysisDecisionMakingwithoutProbabilities第四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
5Table12.3PayoffTableIllustratingaMaximaxDecisionInthemaximaxcriterionthedecisionmakerselectsthedecisionthatwillresultinthemaximumofmaximumpayoffs;anoptimisticcriterion.DecisionMakingwithoutProbabilitiesMaximaxCriterion第五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
6Table12.4PayoffTableIllustratingaMaximinDecisionInthemaximincriterionthedecisionmakerselectsthedecisionthatwillreflectthemaximumoftheminimumpayoffs;apessimisticcriterion.DecisionMakingwithoutProbabilitiesMaximinCriterion第六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
7Table12.6
RegretTableIllustratingtheMinimaxRegretDecisionRegretisthedifferencebetweenthepayofffromthebestdecisionandallotherdecisionpayoffs.Thedecisionmakerattemptstoavoidregretbyselectingthedecisionalternativethatminimizesthemaximumregret.DecisionMakingwithoutProbabilitiesMinimaxRegretCriterion第七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
8TheHurwiczcriterionisacompromisebetweenthemaximaxandmaximincriterion.Acoefficientofoptimism,,isameasureofthedecisionmaker’soptimism.TheHurwiczcriterionmultipliesthebestpayoffbyandtheworstpayoffby1-.,foreachdecision,andthebestresultisselected.
Decision
Values
Apartmentbuilding$50,000(.4)+30,000(.6)=38,000 Officebuilding$100,000(.4)-40,000(.6)=16,000 Warehouse$30,000(.4)+10,000(.6)=18,000DecisionMakingwithoutProbabilitiesHurwiczCriterion第八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
9Theequallikelihood(orLaplace)criterionmultipliesthedecisionpayoffforeachstateofnaturebyanequalweight,thusassumingthatthestatesofnatureareequallylikelytooccur.
Decision
Values
Apartmentbuilding$50,000(.5)+30,000(.5)=40,000 Officebuilding$100,000(.5)-40,000(.5)=30,000 Warehouse$30,000(.5)+10,000(.5)=20,000DecisionMakingwithoutProbabilitiesEqualLikelihoodCriterion第九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
10Adominantdecisionisonethathasabetterpayoffthananotherdecisionundereachstateofnature.Theappropriatecriterionisdependentonthe“risk”personalityandphilosophyofthedecisionmaker.
Criterion
Decision(Purchase) Maximax Officebuilding Maximin Apartmentbuilding Minimaxregret Apartmentbuilding Hurwicz Apartmentbuilding Equallikelihood ApartmentbuildingDecisionMakingwithoutProbabilitiesSummaryofCriteriaResults第十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
11Exhibit12.1DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(1of3)第十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
12Exhibit12.2DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(2of3)第十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
13Exhibit12.3DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(3of3)第十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
14Expectedvalueiscomputedbymultiplyingeachdecisionoutcomeundereachstateofnaturebytheprobabilityofitsoccurrence. EV(Apartment)=$50,000(.6)+30,000(.4)=42,000 EV(Office)=$100,000(.6)-40,000(.4)=44,000 EV(Warehouse)=$30,000(.6)+10,000(.4)=22,000Table12.7PayofftablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedValue第十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
15Theexpectedopportunitylossistheexpectedvalueoftheregretforeachdecision.Theexpectedvalueandexpectedopportunitylosscriterionresultinthesamedecision.
EOL(Apartment)=$50,000(.6)+0(.4)=30,000 EOL(Office)=$0(.6)+70,000(.4)=28,000 EOL(Warehouse)=$70,000(.6)+20,000(.4)=50,000Table12.8Regret(OpportunityLoss)TablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedOpportunityLoss第十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
16Exhibit12.4ExpectedValueProblemsSolutionwithQMforWindows第十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
17Exhibit12.5ExpectedValueProblemsSolutionwithExcelandExcelQM(1of2)第十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
18Exhibit12.6ExpectedValueProblemsSolutionwithExcelandExcelQM(2of2)第十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
19Theexpectedvalueofperfectinformation(EVPI)isthemaximumamountadecisionmakerwouldpayforadditionalinformation.EVPIequalstheexpectedvaluegivenperfectinformationminustheexpectedvaluewithoutperfectinformation.EVPIequalstheexpectedopportunityloss(EOL)forthebestdecision.DecisionMakingwithProbabilitiesExpectedValueofPerfectInformation第十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
20Table12.9PayoffTablewithDecisions,GivenPerfectInformationDecisionMakingwithProbabilitiesEVPIExample(1of2)第二十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
21Decisionwithperfectinformation: $100,000(.60)+30,000(.40)=$72,000Decisionwithoutperfectinformation: EV(office)=$100,000(.60)-40,000(.40)=$44,000
EVPI=$72,000-44,000=$28,000 EOL(office)=$0(.60)+70,000(.4)=$28,000DecisionMakingwithProbabilitiesEVPIExample(2of2)第二十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
22Exhibit12.7DecisionMakingwithProbabilitiesEVPIwithQMforWindows第二十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
23Adecisiontreeisadiagramconsistingofdecisionnodes(representedassquares),probabilitynodes(circles),anddecisionalternatives(branches). Table12.10PayoffTableforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(1of4)第二十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
24Figure12.1DecisionTreeforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(2of4)第二十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
25Theexpectedvalueiscomputedateachprobabilitynode: EV(node2)=.60($50,000)+.40(30,000)=$42,000 EV(node3)=.60($100,000)+.40(-40,000)=$44,000 EV(node4)=.60($30,000)+.40(10,000)=$22,000Brancheswiththegreatestexpectedvalueareselected.DecisionMakingwithProbabilitiesDecisionTrees(3of4)第二十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
26Figure12.2DecisionTreewithExpectedValueatProbabilityNodesDecisionMakingwithProbabilitiesDecisionTrees(4of4)第二十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
27Exhibit12.8DecisionMakingwithProbabilitiesDecisionTreeswithQMforWindows第二十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
28Exhibit12.9DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(1of4)第二十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
29Exhibit12.10DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(2of4)第二十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
30Exhibit12.11DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(3of4)第三十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
31Exhibit12.12DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(4of4)第三十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
32DecisionMakingwithProbabilitiesSequentialDecisionTrees(1of4)Asequentialdecisiontreeisusedtoillustrateasituationrequiringaseriesofdecisions.Usedwhereapayofftable,limitedtoasingledecision,cannotbeused.Realestateinvestmentexamplemodifiedtoencompassaten-yearperiodinwhichseveraldecisionsmustbemade:
第三十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
33Figure12.3SequentialDecisionTreeDecisionMakingwithProbabilitiesSequentialDecisionTrees(2of4)第三十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
34DecisionMakingwithProbabilitiesSequentialDecisionTrees(3of4)Decisionistopurchaseland;highestnetexpectedvalue($1,160,000).Payoffofthedecisionis$1,160,000.
第三十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
35Figure12.4SequentialDecisionTreewithNodalExpectedValuesDecisionMakingwithProbabilitiesSequentialDecisionTrees(4of4)第三十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
36Exhibit12.13SequentialDecisionTreeAnalysisSolutionwithQMforWindows第三十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
37Exhibit12.14SequentialDecisionTreeAnalysisSolutionwithExcelandTreePlan第三十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
38Bayesiananalysisusesadditionalinformationtoalterthemarginalprobabilityoftheoccurrenceofanevent.Inrealestateinvestmentexample,usingexpectedvaluecriterion,bestdecisionwastopurchaseofficebuildingwithexpectedvalueof$444,000,andEVPIof$28,000.
Table12.11PayoffTablefortheRealEstateInvestmentExampleDecisionAnalysiswithAdditionalInformationBayesianAnalysis(1of3)第三十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
39Aconditionalprobabilityistheprobabilitythataneventwilloccurgiventhatanothereventhasalreadyoccurred.Economicanalystprovidesadditionalinformationforrealestateinvestmentdecision,formingconditionalprobabilities: g=goodeconomicconditions p=pooreconomicconditions P=positiveeconomicreport N=negativeeconomicreport P(Pg)=.80 P(NG)=.20 P(Pp)=.10 P(Np)=.90
DecisionAnalysiswithAdditionalInformationBayesianAnalysis(2of3)第三十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
40Aposteriaprobabilityisthealteredmarginalprobabilityofaneventbasedonadditionalinformation.Priorprobabilitiesforgoodorpooreconomicconditionsinrealestatedecision: P(g)=.60;P(p)=.40PosteriaprobabilitiesbyBayes’rule: (gP)=P(PG)P(g)/[P(Pg)P(g)+P(Pp)P(p)] =(.80)(.60)/[(.80)(.60)+(.10)(.40)]=.923Posteria(revised)probabilitiesfordecision: P(gN)=.250 P(pP)=.077 P(pN)=.750DecisionAnalysiswithAdditionalInformationBayesianAnalysis(3of3)第四十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
41DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(1of4)Decisiontreewithposteriorprobabilitiesdifferfromearlierversionsinthat: Twonewbranchesatbeginningoftreerepresentreport outcomes. Probabilitiesofeachstateofnatureareposterior probabilitiesfromBayes’rule.第四十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
42Figure12.5DecisionTreewithPosteriorProbabilities
DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(2of4)第四十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
43DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(3of4)EV(apartmentbuilding)=$50,000(.923)+30,000(.077) =$48,460EV(strategy)=$89,220(.52)+35,000(.48)=$63,194第四十三頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
44Figure12.6DecisionTreeAnalysisDecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(4of4)第四十四頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
45Table12.12ComputationofPosteriorProbabilitiesDecisionAnalysiswithAdditionalInformationComputingPosteriorProbabilitieswithTables第四十五頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
46Theexpectedvalueofsampleinformation(EVSI)isthedifferencebetweentheexpectedvaluewithandwithoutinformation:Forexampleproblem,EVSI=$63,194-44,000=$19,194Theefficiencyofsampleinformationistheratiooftheexpectedvalueofsampleinformationtotheexpectedvalueofperfectinformation:efficiency=EVSI/EVPI=$19,194/28,000=.68DecisionAnalysiswithAdditionalInformationExpectedValueofSampleInformation第四十六頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
47Table12.13PayoffTableforAutoInsuranceExampleDecisionAnalysiswithAdditionalInformationUtility(1of2)第四十七頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
48ExpectedCost(insurance)=.992($500)+.008(500)=$500ExpectedCost(noinsurance)=.992($0)+.008(10,000)=$80Decisionshouldbedonotpurchaseinsurance,butpeoplealmostalwaysdopurchaseinsurance.Utilityisameasureofpersonalsatisfactionderivedfrommoney.Utilesareunitsofsubjectivemeasuresofutility.Riskavertersforgoahighexpectedvaluetoavoidalow-probabilitydisaster.Risktakerstakeachanceforabonanzaonaverylow-probabilityeventinlieuofasurething.DecisionAnalysiswithAdditionalInformationUtility(2of2)第四十八頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
49DecisionAnalysisExampleProblemSolution(1of9)第四十九頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
50DecisionAnalysisExampleProblemSolution(2of9)Determinethebestdecisionwithoutprobabilitiesusingthe5criteriaofthechapter.Determinebestdecisionwithprobabilitiesassuming.70probabilityofgoodconditions,.30ofpoorconditions.Useexpectedvalueandexpectedopportunitylosscriteria.Computeexpectedvalueofperfectinformation.Developadecisiontreewithexpectedvalueatthenodes.Givenfollowing,P(Pg)=.70,P(Ng)=.30,P(Pp)=20,P(Np)=.80,determineposteriaprobabilitiesusingBayes’rule.Performadecisiontreeanalysisusingtheposteriorprobabilityobtainedinparte.第五十頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
51Step1(parta):Determinedecisionswithoutprobabilities.MaximaxDecision:Maintainstatusquo
Decisions
MaximumPayoffs Expand $800,000 Statusquo 1,300,000(maximum) Sell 320,000MaximinDecision:Expand
Decisions
MinimumPayoffs Expand $500,000(maximum) Statusquo -150,000 Sell 320,000DecisionAnalysisExampleProblemSolution(3of9)第五十一頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
52MinimaxRegretDecision:Expand
Decisions
MaximumRegrets Expand $500,000(minimum) Statusquo 650,000 Sell 980,000Hurwicz(=.3)Decision:Expand Expand $800,000(.3)+500,000(.7)=$590,000 Statusquo $1,300,000(.3)-150,000(.7)=$285,000 Sell $320,000(.3)+320,000(.7)=$320,000DecisionAnalysisExampleProblemSolution(4of9)第五十二頁,共五十七頁,編輯于2023年,星期五Chapter12-DecisionAnalysis
53EqualLikelihoodDecision:Expand Ex
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水產(chǎn)養(yǎng)殖行業(yè)助理工作總結(jié)
- 美容行業(yè)人力資源管理經(jīng)驗總結(jié)
- 樓梯扶手銷售工作總結(jié)
- 潛水行業(yè)潛水技巧培訓回顧
- 糧食行業(yè)話務員工作總結(jié)
- 2024年河南省商丘市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2024年四川省涼山自治州公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 2022年山東省煙臺市公開招聘警務輔助人員輔警筆試自考題1卷含答案
- 農(nóng)村先進個人發(fā)言稿
- PEP小學生讀書心得體會作文選
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型國企)2025年
- 廣東省惠州市(2024年-2025年小學四年級語文)統(tǒng)編版綜合練習(上學期)試卷及答案
- 廣東省廣州市天河區(qū)2024年六上數(shù)學期末聯(lián)考試題含解析
- 廣東省珠海市2023-2024學年高二上學期語文期中試卷(含答案)
- 山東省淄博市周村區(qū)(五四制)2023-2024學年七年級上學期期末考試英語試題(含答案無聽力原文及音頻)
- GB/T 44317-2024熱塑性塑料內(nèi)襯油管
- 七年級道德與法治期末復習計劃范文兩篇
- 重慶市七中學2023-2024學年數(shù)學八上期末統(tǒng)考模擬試題【含解析】
- 酒店英語會話(第六版)教案全套 李永生 unit 1 Room Reservations -Unit 15 Handling Problems and Complaints
- 創(chuàng)傷失血性休克中國急診專家共識2023解讀課件
- 大學英語智慧樹知到期末考試答案章節(jié)答案2024年海南經(jīng)貿(mào)職業(yè)技術(shù)學院
評論
0/150
提交評論