數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023_第1頁(yè)
數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023_第2頁(yè)
數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023_第3頁(yè)
數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023_第4頁(yè)
數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023 第數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第1頁(yè)。數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第1頁(yè)。

高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納

(一)、映射、函數(shù)、反函數(shù)

1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.

2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

(1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).

(2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算.

(二)、函數(shù)的解析式與定義域

1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類(lèi)型:

(1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

①分式的分母不得為零;

數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第2頁(yè)。②偶次方根的被開(kāi)方數(shù)不小于零;

③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).

(3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.

2、求函數(shù)的解析式一般有四種情況

(1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.

(2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

(3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

(4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

(三)、函數(shù)的值域與最值

1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

(1)直接法:亦稱(chēng)觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第3頁(yè)。(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.

如函數(shù)的值域是(0,16],值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)值和最小值,只有在改變函數(shù)定義域后,如x0時(shí),函數(shù)的最小值為2.可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響.

3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用

函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或“面積(體積)(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.

數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第4頁(yè)。人教版高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)歸納

84、數(shù)列前項(xiàng)和與通項(xiàng)公式的關(guān)系:

(數(shù)列的前n項(xiàng)的和為).

85、等差、等比數(shù)列公式對(duì)比

等差數(shù)列等比數(shù)列

定義式

()

通項(xiàng)公式及推廣公式

中項(xiàng)公式若成等差,則

若成等比,則

運(yùn)算性質(zhì)若,則

若,則

前項(xiàng)和公式

一個(gè)性質(zhì)成等差數(shù)列

成等比數(shù)列

86、解不等式

(1)、含有絕對(duì)值的不等式

當(dāng)a0時(shí),有.[小于取中間]

或.[大于取兩邊]

(2)、解一元二次不等式的步驟:

①求判別式

②求一元二次方程的解:兩相異實(shí)根一個(gè)實(shí)根沒(méi)有實(shí)根

③畫(huà)二次函數(shù)的圖象

④結(jié)合圖象寫(xiě)出解集

解集R

解集

注:解集為R對(duì)恒成立

(3)高次不等式:數(shù)軸標(biāo)根法(奇穿偶回,大于取上,小于取下)

數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第5頁(yè)。(4)分式不等式:先移項(xiàng)通分,化一邊為0,再將除變乘,化為整式不等式,求解。

如解分式不等式:先移項(xiàng)通分

再除變乘,解出。

87、線性規(guī)劃:

(1)一條直線將平面分為三部分(如圖):

(2)不等式表示直線

某一側(cè)的平面區(qū)域,驗(yàn)證方法:取原點(diǎn)(0,0)代入不

等式,若不等式成立,則平面區(qū)域在原點(diǎn)所在的一側(cè)。假如

直線恰好經(jīng)過(guò)原點(diǎn),則取其它點(diǎn)來(lái)驗(yàn)證,例如取點(diǎn)(1,0)。

(3)線性規(guī)劃求最值問(wèn)題:一般情況可以求出平面區(qū)域各個(gè)頂點(diǎn)的坐標(biāo),代入目標(biāo)函數(shù),的為值。

高三數(shù)學(xué)必修五重要知識(shí)點(diǎn)

一個(gè)推導(dǎo)

利用錯(cuò)位相減法推導(dǎo)等比數(shù)列的前n項(xiàng)和:

Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個(gè)防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.

(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類(lèi)討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N.),則{an}是等比數(shù)列.

(2)中項(xiàng)公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N.),則數(shù)列{an}是等比數(shù)列.

數(shù)學(xué)高中必修五知識(shí)點(diǎn)必看2023全文共6頁(yè),當(dāng)前為第6頁(yè)。(3)通項(xiàng)公式法:若數(shù)列通項(xiàng)公式可寫(xiě)成an=c·qn(c,q均是不為0的常數(shù),n∈N.),則{an}是等比數(shù)列.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論