版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省長春市市第四十一中學(xué)2021年高一數(shù)學(xué)文期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.教師拿了一把直尺走進(jìn)教室,則下列判斷正確的個(gè)數(shù)是(
)①教室地面上有且僅有一條直線與直尺所在直線平行;②教室地面上有且僅有一條直線與直尺所在直線垂直;③教室地面上有無數(shù)條直線與直尺所在直線平行;④教室地面上有無數(shù)條直線與直尺所在直線垂直.A.1 B.2 C.3 D.4參考答案:A【分析】每個(gè)選項(xiàng)逐一進(jìn)行判斷得到答案.【詳解】①當(dāng)直尺與地面平行時(shí),有無數(shù)條直線與直尺平行,錯(cuò)誤②當(dāng)直線與地面垂直時(shí),有無數(shù)條直線與直尺垂直,錯(cuò)誤③當(dāng)直線與地面相交時(shí),沒有直線與直尺平行,錯(cuò)誤④不管直尺與地面是什么關(guān)系,有無數(shù)條直線與直尺所在直線垂直,正確答案選A【點(diǎn)睛】本題考查了直線與平面的關(guān)系,屬于簡(jiǎn)單題目.2.對(duì)任意的實(shí)數(shù)k,直線y=kx+1與圓的位置關(guān)系一定是(
)A.相離
B.相切
C.相交但直線不過圓心
D.相交且直線過圓心參考答案:C3.(4分)半徑R的半圓卷成一個(gè)圓錐,則它的體積為() A. πR3 B. πR3 C. πR3 D. πR3參考答案:A考點(diǎn): 旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái)).專題: 計(jì)算題.分析: 求出扇形的弧長,然后求出圓錐的底面周長,轉(zhuǎn)化為底面半徑,求出圓錐的高,然后求出體積.解答: 2πr=πR,所以r=,則h=,所以V=故選A點(diǎn)評(píng): 本題是基礎(chǔ)題,考查圓錐的展開圖與圓錐之間的計(jì)算關(guān)系,圓錐體積的求法,考查計(jì)算能力.4.已知方程,則的最大值是(
)
A.14-
B.14+
C.9
D.14參考答案:B由圓的方程,得,表示以為圓心,以為半徑的圓,如圖所示,連接,并延長交圓于點(diǎn),此時(shí)取得最大值,又,所以,即的最大值為,故選B.
5.如圖,在△ABC中,,,,則(
)A.
B.
C.
D.參考答案:A∵AD⊥AB,,,∴∵,∴.∴.故選A.
6.(
)A.0
B.
C.
D.
參考答案:B7.下列函數(shù)中,圖象的一部分如右圖所示的是(A)y=sin
(B)y=sin(C)y=cos
(D)y=cos參考答案:D設(shè)圖中對(duì)應(yīng)三角函數(shù)最小正周期為T,從圖象看出,T=,所以函數(shù)的最小正周期為π,函數(shù)應(yīng)為y=向左平移了個(gè)單位,即=,選D.
8.是第二象限角,且滿足,那么(
)
是第一象限角
;
是第二象限角;
是第三象限角
;
可能是第一象限角,也可能是第三象限角;參考答案:C略9.下列函數(shù)中,與表示同一函數(shù)的一組是(
)A.與 B.與C.與 D.與參考答案:C【分析】依次判斷兩個(gè)函數(shù)的定義域和對(duì)應(yīng)法則,值域是否相同即可.【詳解】對(duì)于A.與,定義域是R,定義域是,故兩者不是同一函數(shù);B.與,表達(dá)式不同,故不是同一函數(shù);C.與,定義域相同,對(duì)應(yīng)法則相同,故是同一函數(shù);D.定義域是R,定義域內(nèi)沒有0,故兩者的定義域不同,不是同一函數(shù).故答案為:C.【點(diǎn)睛】這個(gè)題目考查了函數(shù)的三要素,判斷函數(shù)是否為同一函數(shù)主要是看兩個(gè)函數(shù)的三要素是否形同;其中兩個(gè)函數(shù)的對(duì)應(yīng)法則相同和定義域相同則兩個(gè)函數(shù)一定是同一個(gè)函數(shù),定義域相同和值域相同則兩個(gè)函數(shù)不一定為同一函數(shù).10.函數(shù)的定義域是(
)A. B.
C.
D.參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)的定義域是
▲
.參考答案:12.設(shè),則滿足條件的集合A共有
個(gè).參考答案:4
略13.在數(shù)列{an}中,,,若,則{bn}的前n項(xiàng)和取得最大值時(shí)n的值為__________.參考答案:10【分析】解法一:利用數(shù)列的遞推公式,化簡(jiǎn)得,得到數(shù)列為等差數(shù)列,求得數(shù)列的通項(xiàng)公式,得到,,得出所以,,,,進(jìn)而得到結(jié)論;解法二:化簡(jiǎn)得,令,求得,進(jìn)而求得,再由,解得或,即可得到結(jié)論.【詳解】解法一:因?yàn)棰偎寓?,①②,得即,所以?shù)列為等差數(shù)列.在①中,取,得即,又,則,所以.因此,所以,,,所以,又,所以時(shí),取得最大值.解法二:由,得,令,則,則,即,代入得,取,得,解得,又,則,故所以,于是.由,得,解得或,又因?yàn)?,,所以時(shí),取得最大值.【點(diǎn)睛】本題主要考查了數(shù)列的綜合應(yīng)用,以及數(shù)列的最值問題的求解,此類題目是數(shù)列問題中的常見題型,對(duì)考生計(jì)算能力要求較高,解答中確定通項(xiàng)公式是基礎(chǔ),合理利用數(shù)列的性質(zhì)是關(guān)鍵,能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計(jì)算能力等,屬于中檔試題.14.已知二次函數(shù)f(x)和g(x)的圖象如圖所示:用式子表示它們的大小關(guān)系,是
。參考答案:;15.設(shè)x,y∈R,a>1,b>1,若,,則的最大值為______。參考答案:1解:因?yàn)?,,,?dāng)且僅當(dāng)a=b=,x=y=2時(shí),等號(hào)成立,∴的最大值為1。16.函數(shù)的定義域?yàn)?用集合表示)______________.參考答案:略17.已知正方體外接球的體積是,那么此正方體的棱長等于.參考答案:【考點(diǎn)】旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái)).【分析】先求球的半徑,直徑就是正方體的對(duì)角線,然后求出正方體的棱長.【解答】解:正方體外接球的體積是,則外接球的半徑R=2,正方體的對(duì)角線的長為4,棱長等于,故答案為.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.長時(shí)間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的身體健康,某校為了解、兩班學(xué)生手機(jī)上網(wǎng)的時(shí)長,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)的時(shí)間作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).(1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計(jì),哪個(gè)班的學(xué)生平均上網(wǎng)時(shí)間較長;(2)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過19的數(shù)據(jù)記為,從班的樣本中隨機(jī)抽取一個(gè)不超過21的數(shù)據(jù)記為,求的概率.參考答案:(1)班樣本數(shù)據(jù)的平均值為.由此估計(jì)班學(xué)生每周平均上網(wǎng)時(shí)間17小時(shí);班樣本數(shù)據(jù)的平均值為,由此估計(jì)班學(xué)生每周平均上網(wǎng)時(shí)間較長.(2)班的樣本數(shù)據(jù)中不超過19的數(shù)據(jù)有3個(gè),分別為:9,11,14,班的樣本數(shù)據(jù)中不超過21的數(shù)據(jù)也有3個(gè),分別為:11,12,21,從班和班的樣本數(shù)據(jù)中各隨機(jī)抽取一個(gè)共有:9種不同情況,分別為:,,,,,,,,,其中的情況有,兩種,故的概率.19..已知數(shù)列{an}中,.(1)求證:是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)已知數(shù)列{bn},滿足.(i)求數(shù)列{bn}的前n項(xiàng)和Tn;(ii)若不等式對(duì)一切恒成立,求的取值范圍.參考答案:(1)答案見解析;(2);.【分析】(1)由題意結(jié)合等比數(shù)列的定義證明數(shù)列是等比數(shù)列,然后求解其通項(xiàng)公式即可;(2)(i)首先確定數(shù)列的通項(xiàng)公式,然后求解其前n項(xiàng)和即可;(ii)結(jié)合恒成立的條件分類討論n為奇數(shù)和n為偶數(shù)兩種情況確定的取值范圍即可.【詳解】,,,,,,是以3為首項(xiàng),3公比的等比數(shù)列,..解由得,,,兩式相減,得:,.由得,令,則是遞增數(shù)列,若n為偶數(shù)時(shí),恒成立,又,,若n為奇數(shù)時(shí),恒成立,,,.綜上,的取值范圍是20.(本大題12分)已知函數(shù)在區(qū)間[2,3]上有最大值4和最小值1,設(shè).(1)求的值;(2)若不等式在區(qū)間[-1,1]上有解,求實(shí)數(shù)k的取值范圍;(3)若有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.參考答案:(1)∴
∴在[2,3]上為增函數(shù)
∴
∴(2)由題意知
∴不等式可化為可化為
令∴,故,令由題意可得
在上有解等價(jià)于(3)原方程可化為:
令,則方程可化為:
∵原方程有三個(gè)不同的實(shí)數(shù)解。由的圖象知
有兩個(gè)根且或證,則或∴
21.已知函數(shù)=的定義域?yàn)椋?)求的取值范圍;(2)當(dāng)變化時(shí),若=,求的值域。參考答案:解:(1)由題意,當(dāng)∈R時(shí),-6++8≥0恒成立,
當(dāng)m=0時(shí),恒成立;……….2分
當(dāng)時(shí),解得:綜上得:∈0,1.
…………6分(2)=,==,∴∈0,2.
…………12分略22.(14分)求斜率為,且與坐標(biāo)軸所圍成的三角形的面積是6的直線方程.參考答案:考點(diǎn): 直線的截距式方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國涂抹型耐磨陶瓷涂料數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國提花器材數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國單掩門行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024至2030年中國IC管專用箱數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年掛畫項(xiàng)目投資價(jià)值分析報(bào)告
- 2024年背壓調(diào)節(jié)器項(xiàng)目可行性研究報(bào)告
- 2024年卡那巴蠟項(xiàng)目可行性研究報(bào)告
- 中國汽車門窗密封條行業(yè)市場(chǎng)現(xiàn)狀分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告(2024-2030版)
- 中國漢黃芩素行業(yè)競(jìng)爭(zhēng)優(yōu)勢(shì)分析與投資價(jià)值評(píng)估研究報(bào)告(2024-2030版)
- 中國氨基塑料行業(yè)盈利模式及需求前景預(yù)測(cè)研究報(bào)告(2024-2030版)
- 部隊(duì)學(xué)習(xí)成才教案黑發(fā)不知勤學(xué)早,白首方悔讀書遲
- Q∕SY 1455-2012 抽油機(jī)井功圖法產(chǎn)液量計(jì)量推薦作法
- 物業(yè)風(fēng)險(xiǎn)源辨識(shí)及管控措施
- 超聲科圖像質(zhì)量評(píng)價(jià)細(xì)則
- 貝朗CRRT報(bào)警處理-問題-精品醫(yī)學(xué)課件
- 面館開店投資可行性分析報(bào)告
- 中石油HSE管理體系13版課件
- 《生物化學(xué)》本科課件第12章+核酸通論
- 2022小學(xué)新課程標(biāo)準(zhǔn)《語文》
- 增強(qiáng)對(duì)外話語主動(dòng)提升國際傳播能力PPT高度重視網(wǎng)絡(luò)對(duì)外傳播切實(shí)提升國際話語主動(dòng)權(quán)PPT課件(帶內(nèi)容)
- 垃圾電廠專用語中英文對(duì)照手冊(cè)
評(píng)論
0/150
提交評(píng)論