版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,,且與夾角為,則()A.3 B. C.2 D.2.已知數(shù)列滿足若,則數(shù)列的第2018項為()A. B. C. D.3.關(guān)于某設(shè)備的使用年限(單位:年)和所支出的維修費用(單位:萬元)有如下統(tǒng)計數(shù)據(jù)表:使用年限維修費用根據(jù)上表可得回歸直線方程,據(jù)此估計,該設(shè)備使用年限為年時所支出的維修費用約是()A.萬元 B.萬元 C.萬元 D.萬元4.在△ABC中,N是AC邊上一點,且=,P是BN上的一點,若=m+,則實數(shù)m的值為()A. B. C.1 D.35..設(shè)、是關(guān)于x的方程的兩個不相等的實數(shù)根,那么過兩點,的直線與圓的位置關(guān)系是()A.相離. B.相切. C.相交. D.隨m的變化而變化.6.在中,所對的邊分別為,若,,,則()A. B. C.1 D.37.函數(shù)()的部分圖象如圖所示,若,且,則()A.1 B. C. D.8.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.9.直線:與圓的位置關(guān)系為()A.相離 B.相切 C.相交 D.無法確定10.設(shè)是虛數(shù)單位,復(fù)數(shù)為純虛數(shù),則實數(shù)的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊上一點P的坐標為,則____.12.某次體檢,6位同學(xué)的身高(單位:米)分別為1.72,1.78,1.75,1.80,1.69,1.77則這組數(shù)據(jù)的中位數(shù)是_________(米).13.設(shè)扇形的半徑長為,面積為,則扇形的圓心角的弧度數(shù)是14.已知均為正數(shù),則的最大值為______________.15.和的等差中項為__________.16.已知一圓錐的側(cè)面展開圖為半圓,且面積為S,則圓錐的底面積是_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(I)比較,的大?。↖I)求函數(shù)的最大值.18.某中學(xué)從高三男生中隨機抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:組號分組頻數(shù)頻率第1組50.05第2組a0.35第3組30b第4組200.20第5組100.10合計n1.00(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;(2)為了能對學(xué)生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進行不同項目的體能測試,若在這7名學(xué)生中隨機抽取2名學(xué)生進行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.19.某算法框圖如圖所示.(1)求函數(shù)的解析式及的值;(2)若在區(qū)間內(nèi)隨機輸入一個值,求輸出的值小于0的概率.20.已知,,函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間.21.如圖,在四邊形中,已知,,(1)若,且的面積為,求的面積:(2)若,求的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由題意利用兩個向量數(shù)量積的定義,求得的值,再根據(jù),計算求得結(jié)果.【詳解】由題意若,,且與夾角為,可得,.故選:B.【點睛】本題考查向量數(shù)量積的定義、向量的模的方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意不要錯選成A答案.2、A【解析】
利用數(shù)列遞推式求出前幾項,可得數(shù)列是以4為周期的周期數(shù)列,即可得出答案.【詳解】,,,數(shù)列是以4為周期的周期數(shù)列,則.故選A.【點睛】本題考查數(shù)列的遞推公式和周期數(shù)列的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.3、C【解析】
計算出和,將點的坐標代入回歸直線方程,求得實數(shù)的值,然后將代入回歸直線方程可求得結(jié)果.【詳解】由表格中的數(shù)據(jù)可得,,由于回歸直線過樣本中心點,則,解得,所以,回歸直線方程為,當時,.因此,該設(shè)備使用年限為年時所支出的維修費用約是萬元.故選:C.【點睛】本題考查利用回歸直線方程對總體數(shù)據(jù)進行估計,充分利用結(jié)論“回歸直線過樣本的中心點”的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.4、B【解析】
根據(jù)向量的線性表示逐步代換掉不需要的向量求解.【詳解】設(shè),所以所以故選B.【點睛】本題考查向量的線性運算,屬于基礎(chǔ)題.5、D【解析】直線AB的方程為.即,所以直線AB的方程為,因為,所以,所以,所以直線AB與圓可能相交,也可能相切,也可能相離.6、A【解析】
利用三角形內(nèi)角和為,得到,利用正弦定理求得.【詳解】因為,,所以,在中,,所以,故選A.【點睛】本題考查三角形內(nèi)角和及正弦定理的應(yīng)用,考查基本運算求解能力.7、D【解析】
由三角函數(shù)的圖象求得,再根據(jù)三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】由圖象可知,,即,所以,即,又因為,則,解得,又由,所以,所以,又因為,所以圖中的最高點坐標為.結(jié)合圖象和已知條件可知,所以,故選D.【點睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、A【解析】
一元二次不等式大于零解集是,先判斷二次項系數(shù)為負,再根據(jù)根與系數(shù)關(guān)系,可求出a,b的值,代入解析式,求解不等式.【詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【點睛】對于含參數(shù)的一元二次不等式需要先判斷二次項系數(shù)的正負,再進一步求解參數(shù).9、C【解析】
求出圓的圓心坐標和半徑,然后運用點到直線距離求出的值和半徑進行比較,判定出直線與圓的關(guān)系.【詳解】因為圓,所以圓心,半徑,所以圓心到直線的距離為,則直線與圓相交.故選【點睛】本題考查了直線與圓的位置關(guān)系,運用點到直線的距離公式求出和半徑比較,得到直線與圓的位置關(guān)系.10、A【解析】,,,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.12、1.76【解析】
將這6位同學(xué)的身高按照從低到高排列為:1.69,1.72,1.75,1.77,1.78,1.80,這六個數(shù)的中位數(shù)是1.75與1.77的平均數(shù),顯然為1.76.【考點】中位數(shù)的概念【點睛】本題主要考查中位數(shù)的概念,是一道基礎(chǔ)題目.從歷年高考題目看,涉及統(tǒng)計的題目,往往不難,主要考查考生的視圖、用圖能力,以及應(yīng)用數(shù)學(xué)解決實際問題的能力.13、2【解析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點:扇形面積公式.14、【解析】
根據(jù)分子和分母的特點把變形為,運用重要不等式,可以求出的最大值.【詳解】(當且僅當且時取等號),(當且僅當且時取等號),因此的最大值為.【點睛】本題考查了重要不等式,把變形為是解題的關(guān)鍵.15、【解析】
設(shè)和的等差中項為,利用等差中項公式可得出的值.【詳解】設(shè)和的等差中項為,由等差中項公式可得,故答案為:.【點睛】本題考查等差中項的求解,解題時要充分利用等差中項公式來求解,考查計算能力,屬于基礎(chǔ)題.16、【解析】
由已知中圓錐的側(cè)面展開圖為半圓且面積為S,我們易確定圓錐的母線長l與底面半徑R之間的關(guān)系,進而求出底面面積即可得到結(jié)論.【詳解】如圖:設(shè)圓錐的母線長為l,底面半徑為R若圓錐的側(cè)面展開圖為半圓則2πR=πl(wèi),即l=2R,又∵圓錐的側(cè)面展開圖為半圓且面積為S,則圓錐的底面面積是.故答案為.【點睛】本題考查的知識點是圓錐的表面積,根據(jù)圓錐的側(cè)面展開圖為半圓,確定圓錐的母線長與底面的關(guān)系是解答本題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II)時,函數(shù)取得最大值【解析】試題分析:(1)將f(),f()求出大小后比較即可.(2)根據(jù)三角函數(shù)二倍角公式將f(x)化簡,最終化得一個二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性,由此得到最大值.解:(I)因為所以因為,所以(II)因為令,,所以,因為對稱軸,根據(jù)二次函數(shù)性質(zhì)知,當時,函數(shù)取得最大值.18、(1)直方圖見解析;(2).【解析】
(1)由題意知,0.050,從而n=100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣,35名學(xué)生中抽取7名學(xué)生,設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為,利用列舉法能求出第4組中至少有一名學(xué)生被抽中的概率.【詳解】(1)由頻率分布表可得,所以,;(2)因為第1,4,5組共有35名學(xué)生,利用分層抽樣,在35名學(xué)生中抽取7名學(xué)生,每組分別為:第1組;第4組;第5組.設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為.則從7位學(xué)生中抽兩位學(xué)生的基本事件分別為:一共21種.記“第4組中至少有一名學(xué)生被抽中”為事件,即包含的基本事件分別為:一共3種,于是所以,.【點睛】本題考查概率的求法,考查頻率分布直方圖、列舉法等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.19、(1);(2)【解析】
(1)從程序框圖可提煉出分段函數(shù)的函數(shù)表達式,從而計算得到的值;(2)此題為幾何概型,分類討論得到滿足條件下的函數(shù)x值,從而求得結(jié)果.【詳解】(1)由算法框圖得:當時,,當時,,當時,,,(2)當時,,當時,由得故所求概率為【點睛】本題主要考查分段函數(shù)的應(yīng)用,算法框圖的理解,意在考查學(xué)生分析問題的能力.20、(1)(2)【解析】
(1)直接利用向量的數(shù)量積的應(yīng)用和三角函數(shù)關(guān)系式的恒等變變換,求出三角函數(shù)的關(guān)系式,進一步求出函數(shù)的最小正周期,即可求得答案.(2)利用(1)的函數(shù)關(guān)系式和整體思想求出函數(shù)的單調(diào)區(qū)間,即可求得答案.【詳解】(1),,函數(shù).(2)由(1)得:令:解得:函數(shù)的單調(diào)遞增區(qū)間為:【點睛】本題考查了向量數(shù)量積和三角函數(shù)求周期,及其求正弦函數(shù)單調(diào)區(qū)間,解題關(guān)鍵是掌握正弦函數(shù)周期求法和整體法求正弦函數(shù)單調(diào)區(qū)間的求法,考查了分析能力和計算能力,屬于中檔題.21、(1);(2)3【解析】
(1)根據(jù)可解出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44970-2024糧油機械氣墊帶式輸送機
- 《解讀學(xué)習金字塔》課件
- 【大學(xué)課件】危害公共安全罪
- 《計算機安全概述》課件
- 膚色暗黃的臨床護理
- 孕期同房出血的健康宣教
- 《機械設(shè)計基礎(chǔ)》課件-第11章
- 孕期胸痛的健康宣教
- 喉插管損傷的健康宣教
- 孕期痤瘡的健康宣教
- 河北省邯鄲市(2024年-2025年小學(xué)四年級語文)人教版期末考試((上下)學(xué)期)試卷及答案
- 2024-2030年中國嵌入式多媒體卡(eMMC)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 車用LNG氣瓶技術(shù)參數(shù)規(guī)格及配車選型技術(shù)資料
- 2023年海南高考卷生物試題(答案)
- 數(shù)字媒體藝術(shù)史全冊完整教學(xué)課件
- 全冊知識點梳理-2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 2024年高考英語讀后續(xù)寫15種情景高分句式仿寫素材積累(講義背誦版)
- 湖南省長沙市2024年中考化學(xué)真題【附真題答案】
- 五年級蘇教版數(shù)學(xué)上冊《解決問題的策略一一列舉》說課稿
- 2024年駕駛證資格考試科目一必刷題庫及答案(共520題)
- 2024-2030年中國空氣消毒凈化器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
評論
0/150
提交評論