江蘇常熟中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第1頁
江蘇常熟中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第2頁
江蘇常熟中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第3頁
江蘇常熟中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第4頁
江蘇常熟中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將正整數(shù)排列如下:則圖中數(shù)2020出現(xiàn)在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列2.某三棱錐的左視圖、俯視圖如圖所示,則該三棱錐的體積是()A.3 B.2 C. D.13.函數(shù)f(x)=4A.2kπ+π6C.2kπ+π124.在等比數(shù)列中,,,則()A. B.3 C. D.15.化成弧度制為()A. B. C. D.6.()A.4 B. C.1 D.27.在數(shù)列中,若,,則()A. B. C. D.8.設(shè)等差數(shù)列的前n項和為,若,則()A.3 B.4 C.5 D.69.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒,若一名行人來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為()A. B. C. D.10.執(zhí)行下面的程序框圖,則輸出的的值為()A.10 B.34 C.36 D.154二、填空題:本大題共6小題,每小題5分,共30分。11.已知正實數(shù)滿足,則的最小值為__________.12.已知一圓錐的側(cè)面展開圖為半圓,且面積為S,則圓錐的底面積是_______13.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………14.在等比數(shù)列中,,,則_____.15.在《九章算術(shù)·商功》中將四個面均為直角三角形的三棱錐稱為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點為______.16.根據(jù)黨中央關(guān)于“精準脫貧”的要求,石嘴山市農(nóng)業(yè)經(jīng)濟部門派3位專家對大武口、惠農(nóng)2個區(qū)進行調(diào)研,每個區(qū)至少派1位專家,則甲,乙兩位專家派遣至惠農(nóng)區(qū)的概率為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列中,,(為常數(shù),1,2,3,…),且.(1)求c的值;(2)求證:①;②;(3)比較++…+與的大小,并加以證明.18.已知函數(shù)當(dāng)時,求函數(shù)的最小值.19.設(shè)函數(shù),其中.(1)在實數(shù)集上用分段函數(shù)形式寫出函數(shù)的解析式;(2)求函數(shù)的最小值.20.在銳角中,角的對邊分別是,且.(1)求角的大??;(2)若,求面積的最大值.21.已知數(shù)列前n項和,點在函數(shù)的圖象上.(1)求的通項公式;(2)設(shè)數(shù)列的前n項和為,不等式對任意的正整數(shù)恒成立,求實數(shù)a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)題意,構(gòu)造數(shù)列,利用數(shù)列求和推出的位置.【詳解】根據(jù)已知,第行有個數(shù),設(shè)數(shù)列為行數(shù)的數(shù)列,則,即第行有個數(shù),第行有個數(shù),……,第行有個數(shù),所以,第行到第行數(shù)的總個數(shù),當(dāng)時,數(shù)的總個數(shù),所以,為時的數(shù),即行的數(shù)為:,,,,……,所以,為行第列.故選:B.【點睛】本題考查數(shù)列的應(yīng)用,構(gòu)造數(shù)列,利用數(shù)列知識求解很關(guān)鍵,屬于中檔題.2、D【解析】

根據(jù)三視圖高平齊的原則得知錐體的高,結(jié)合俯視圖可計算出底面面積,再利用錐體體積公式可得出答案.【詳解】由三視圖“高平齊”的原則可知該三棱錐的高為,俯視圖的面積為錐體底面面積,則該三棱錐的底面面積為,因此,該三棱錐的體積為,故選D.【點睛】本題考查利用三視圖求幾何體的體積,解題時充分利用三視圖“長對正,高平齊,寬相等”的原則得出幾何體的某些數(shù)據(jù),并判斷出幾何體的形狀,結(jié)合相關(guān)公式進行計算,考查空間想象能力,屬于中等題.3、D【解析】

解不等式4sin【詳解】因為f(x)=4所以4sinxcos解得kπ+π故選:D【點睛】本題主要考查三角函數(shù)定義域的求法,考查解三角不等式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、C【解析】

根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列,故.故選:C【點睛】本題主要考查了等比數(shù)列性質(zhì)求解某項的方法,屬于基礎(chǔ)題.5、A【解析】

利用角度化弧度公式可將化為對應(yīng)的弧度數(shù).【詳解】由題意可得,故選A.【點睛】本題考查角度化弧度,充分利用公式進行計算,考查計算能力,屬于基礎(chǔ)題.6、A【解析】

分別利用和差公式計算,相加得答案.【詳解】故答案為A【點睛】本題考查了正切的和差公式,意在考查學(xué)生的計算能力.7、C【解析】

利用倒數(shù)法構(gòu)造等差數(shù)列,求解通項公式后即可求解某一項的值.【詳解】∵,∴,即,數(shù)列是首項為,公差為2的等差數(shù)列,∴,即,∴.故選C.【點睛】對于形如,可將其轉(zhuǎn)化為的等差數(shù)列形式,然后根據(jù)等差數(shù)列去計算.8、C【解析】

由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點睛】本題主要考查等差數(shù)列的通項公式與求和公式的應(yīng)用,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,屬于中檔題.9、B【解析】試題分析:因為紅燈持續(xù)時間為40秒,所以這名行人至少需要等待15秒才出現(xiàn)綠燈的概率為,故選B.【考點】幾何概型【名師點睛】對于幾何概型的概率公式中的“測度”要有正確的認識,它只與大小有關(guān),而與形狀和位置無關(guān),在解題時,要掌握“測度”為長度、面積、體積、角度等常見的幾何概型的求解方法.10、B【解析】試題分析:第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):結(jié)束循環(huán),輸出,選B.考點:循環(huán)結(jié)構(gòu)流程圖【名師點睛】算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】

由題得,解不等式即得x+y的最小值.【詳解】由題得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值為6.當(dāng)且僅當(dāng)x=y=3時取等.故答案為:6【點睛】本題主要考查基本不等式求最值,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.12、【解析】

由已知中圓錐的側(cè)面展開圖為半圓且面積為S,我們易確定圓錐的母線長l與底面半徑R之間的關(guān)系,進而求出底面面積即可得到結(jié)論.【詳解】如圖:設(shè)圓錐的母線長為l,底面半徑為R若圓錐的側(cè)面展開圖為半圓則2πR=πl(wèi),即l=2R,又∵圓錐的側(cè)面展開圖為半圓且面積為S,則圓錐的底面面積是.故答案為.【點睛】本題考查的知識點是圓錐的表面積,根據(jù)圓錐的側(cè)面展開圖為半圓,確定圓錐的母線長與底面的關(guān)系是解答本題的關(guān)鍵.13、128【解析】

觀察數(shù)陣可知:前行一共有個數(shù),且第行的最后一個數(shù)為,且第行有個數(shù),由此可推斷出所在的位置.【詳解】因為前行一共有個數(shù),且第行的最后一個數(shù)為,又因為,所以在第行,且第45行最后數(shù)為,又因為第行有個數(shù),,所以在第列,所以.故答案為:.【點睛】本題考查數(shù)列在數(shù)陣中的應(yīng)用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應(yīng)用問題,可從以下點分析問題:觀察每一行數(shù)據(jù)個數(shù)與行號關(guān)系,同時注意每一行開始的數(shù)據(jù)或結(jié)尾數(shù)據(jù),所有行數(shù)據(jù)的總個數(shù),注意等差數(shù)列的求和公式的運用.14、1【解析】

由等比數(shù)列的性質(zhì)可得,結(jié)合通項公式可得公比q,從而可得首項.【詳解】根據(jù)題意,等比數(shù)列中,其公比為,,則,解可得,又由,則有,則,則;故答案為:1.【點睛】本題考查等比數(shù)列的通項公式以及等比數(shù)列性質(zhì)(其中m+n=p+q)的應(yīng)用,也可以利用等比數(shù)列的基本量來解決.15、【解析】

根據(jù),可得平面,進而可得,再由,證明平面,即可得出,是的直角頂點.【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點為.故答案為:.【點睛】本題考查了直線與直線以及直線與平面垂直的應(yīng)用問題,屬于基礎(chǔ)題.16、【解析】

將所有的基本事件全部列舉出來,確定基本事件的總數(shù),并確定所求事件所包含的基本事件數(shù),然后利用古典概型的概率公式求出答案.【詳解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口區(qū)調(diào)研的專家),共個,因此,所求的事件的概率為,故答案為.【點睛】本題考查古典概型概率的計算,解決這類問題的關(guān)鍵在于確定基本事件的數(shù)目,一般利用枚舉法和數(shù)狀圖法來列舉,遵循不重不漏的基本原則,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①見證明;②見證明;(3)++…+,證明見解析【解析】

(1)將代入,結(jié)合可求出的值;(2)可知,,即可證明結(jié)論;(3)由題意可得,從而可得到,求和可得,然后作差,通過討論可比較二者大小.【詳解】(1)由題意:,.而,得,即,解得或,因為,所以滿足題意.(2)因為,所以.則.,因為,,所以,所以.(3)由,可得,從而,所以.因為,所以,所以.,,,,當(dāng)n=1時,,故;當(dāng)n=2時,,;當(dāng)n≥3時,,則,.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式和數(shù)列的求和,考查了不等式的證明,考查了學(xué)生的邏輯推理能力與計算能力,屬于難題.18、當(dāng)時,,當(dāng)時,,當(dāng)時,.【解析】

將函數(shù)的解析式化成二次函數(shù)的形式,然后把作為整體,并根據(jù)的取值范圍,結(jié)合求二次函數(shù)在閉區(qū)間上的最值的方法進行求解即可.【詳解】由題意得.∵,∴.當(dāng),即時,則當(dāng),即時,函數(shù)取得最小值,且;當(dāng),即時,則當(dāng),即時,函數(shù)取得最小值,且;當(dāng),即時,則當(dāng),函數(shù)取得最小值,且.綜上可得.【點睛】解答本題的關(guān)鍵是將問題轉(zhuǎn)化為二次函數(shù)的問題求解,求二次函數(shù)在閉區(qū)間上的最值時要結(jié)合拋物線的開口方向和對稱軸與區(qū)間的位置關(guān)系求解,體現(xiàn)了數(shù)形結(jié)合的應(yīng)用,屬于基礎(chǔ)題.19、(1);(2).【解析】

(1)令,解得的范圍,再結(jié)合的意義分段函數(shù)形式寫出函數(shù)的解析式即可.(2)利用的奇偶性,只需要考慮的情形,只需分兩種情形討論:,當(dāng)時,分別求出的最小值即可.【詳解】(1),令,得,解得或,(2)因為是偶函數(shù),所以只需考慮的情形,當(dāng)時,,當(dāng)時,當(dāng)時,,當(dāng)時,,時,.【點睛】本題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)解析式的求法、不等式的解法等基本知識,考查了運算求解能力,考查分類討論思想、化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(1);(2)【解析】

(1)利用正弦定理邊轉(zhuǎn)化為角,逐步化簡,即可得到本題答案;(2)由余弦定理得,,綜合,得,從而可得到本題答案.【詳解】(1)因為,所以,即,所以,又,所以,由為銳角三角形,則;(2)因為,所以,所以,即(當(dāng)且僅當(dāng)時取等號),所以.【點睛】本題主要考查利用正弦定理邊角轉(zhuǎn)化求角,以及余弦定理和基本不等式綜合運用求三角形面積的最大值.21、(1);(2).【解析】試題分析:(1)將點的坐標(biāo)代入函數(shù)的方程得到.利用,可求得數(shù)列的通項公式為.(2)利用裂項求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論