2022-2023學(xué)年黃南市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第1頁
2022-2023學(xué)年黃南市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第2頁
2022-2023學(xué)年黃南市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第3頁
2022-2023學(xué)年黃南市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第4頁
2022-2023學(xué)年黃南市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.得到函數(shù)的圖象,只需將的圖象()A.向左移動(dòng) B.向右移動(dòng) C.向左移動(dòng) D.向右移動(dòng)2.若都是正數(shù),則的最小值為().A.5 B.7 C.9 D.133.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊過點(diǎn),則()A. B. C. D.4.某三棱柱的底面是邊長為2的正三角形,高為6,則該三棱柱的體積為A. B. C. D.5.某興趣小組合作制作了一個(gè)手工制品,并將其繪制成如圖所示的三視圖,其中側(cè)視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.6.在中,角,,所對(duì)的邊分別為,,,則下列命題中正確命題的個(gè)數(shù)為()①若,則;②若,則為鈍角三角形;③若,則.A.1 B.2 C.3 D.07.的內(nèi)角的對(duì)邊分別是,若,,,則()A. B. C. D.8.已知某線路公交車從6:30首發(fā),每5分鐘一班,甲、乙兩同學(xué)都從起點(diǎn)站坐車去學(xué)校,若甲每天到起點(diǎn)站的時(shí)間是在6:30~7:00任意時(shí)刻隨機(jī)到達(dá),乙每天到起點(diǎn)站的時(shí)間是在6:45~7:15任意時(shí)刻隨機(jī)到達(dá),那么甲、乙兩人搭乘同一輛公交車的概率是()A. B. C. D.9.的內(nèi)角的對(duì)邊分別為成等比數(shù)列,且,則等于()A. B. C. D.10.如圖所示的程序框圖,若執(zhí)行的運(yùn)算是,則在空白的執(zhí)行框中,應(yīng)該填入A.B.C.D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則______.12.某奶茶店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:)之間的關(guān)系如下:x012y5221通過上面的五組數(shù)據(jù)得到了x與y之間的線性回歸方程:;但現(xiàn)在丟失了一個(gè)數(shù)據(jù),該數(shù)據(jù)應(yīng)為____________.13.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.14.不等式的解集為______.15.不等式的解集為_______________.16.已知銳角、滿足,,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),按閱讀時(shí)間分組:第一組[0,5),第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示.已知第三組的頻數(shù)是第五組頻數(shù)的3倍.(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值;(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加?!爸腥A詩詞比賽”.經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來自不同組別的概率.18.已知分別為三個(gè)內(nèi)角的對(duì)邊長,且(1)求角的大小;(2)若,求面積的最大值.19.已知四棱錐的底面是菱形,底面,是上的任意一點(diǎn)求證:平面平面設(shè),求點(diǎn)到平面的距離在的條件下,若,求與平面所成角的正切值20.已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式(2)數(shù)列的前項(xiàng)和為,若存在,使得成立,求范圍?21.某高速公路隧道內(nèi)設(shè)雙行線公路,其截面由一段圓弧和一個(gè)長方形的三邊構(gòu)成(如圖所示).已知隧道總寬度為,行車道總寬度為,側(cè)墻面高,為,弧頂高為.()建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求圓弧所在的圓的方程.()為保證安全,要求行駛車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請(qǐng)計(jì)算車輛通過隧道的限制高度是多少.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

直接利用三角函數(shù)圖象的平移變換法則,對(duì)選項(xiàng)中的變換逐一判斷即可.【詳解】函數(shù)的圖象,向左平移個(gè)單位,得,錯(cuò);函數(shù)的圖象,向右平移個(gè)單位,得,對(duì).函數(shù)的圖象,向左平移個(gè)單位,得,錯(cuò);函數(shù)的圖象,向右平移個(gè)單位,得,錯(cuò),故選B.【點(diǎn)睛】本題考查了三角函數(shù)的圖象,重點(diǎn)考查學(xué)生對(duì)三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學(xué)生對(duì)所學(xué)知識(shí)理解的深度.2、C【解析】

把式子展開,合并同類項(xiàng),運(yùn)用基本不等式,可以求出的最小值.【詳解】因?yàn)槎际钦龜?shù),所以,(當(dāng)且僅當(dāng)時(shí)取等號(hào)),故本題選C.【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.3、C【解析】

利用三角函數(shù)定義即可求得:,,再利用余弦的二倍角公式得解.【詳解】因?yàn)榻堑慕K邊過點(diǎn),所以點(diǎn)到原點(diǎn)的距離所以,所以故選C【點(diǎn)睛】本題主要考查了三角函數(shù)定義及余弦的二倍角公式,考查計(jì)算能力,屬于較易題.4、C【解析】

計(jì)算結(jié)果.【詳解】因?yàn)榈酌媸沁呴L為2的正三角形,所以底面的面積為,則該三棱柱的體積為.【點(diǎn)睛】本題考查了棱柱的體積公式,屬于簡單題型.5、D【解析】

由三視圖可知,得到該幾何體是由兩個(gè)圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【詳解】由三視圖可知,該幾何體是由兩個(gè)圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【點(diǎn)睛】本題考查了幾何體的三視圖及表面積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.6、C【解析】

根據(jù)正弦定理和大角對(duì)大邊判斷①正確;利用余弦定理得到為鈍角②正確;化簡利用余弦定理得到③正確.【詳解】①若,則;根據(jù),則即,即,正確②若,則為鈍角三角形;,為鈍角,正確③若,則即,正確故選C【點(diǎn)睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生對(duì)于正弦定理和余弦定理的靈活運(yùn)用.7、B【解析】,所以,整理得求得或若,則三角形為等腰三角形,不滿足內(nèi)角和定理,排除.【考點(diǎn)定位】本題考查正弦定理和余弦定理的應(yīng)用,考查運(yùn)算能力和分類討論思想.當(dāng)求出后,要及時(shí)判斷出,便于三角形的初步定型,也為排除提供了依據(jù).如果選擇支中同時(shí)給出了或,會(huì)增大出錯(cuò)率.8、D【解析】

根據(jù)甲、乙的到達(dá)時(shí)間,作出可行域,然后考慮甲、乙能同乘一輛公交車對(duì)應(yīng)的區(qū)域面積,根據(jù)幾何概型的概率求解方法即可求解出對(duì)應(yīng)概率.【詳解】設(shè)甲到起點(diǎn)站的時(shí)間為:時(shí)分,乙到起點(diǎn)站的時(shí)間為時(shí)分,所以,記事件為甲乙搭乘同一輛公交車,所以,作出可行域以及目標(biāo)區(qū)域如圖所示:由幾何概型的概率計(jì)算可知:.故選:D.【點(diǎn)睛】本題考查利用線性規(guī)劃的可行域解決幾何概型中的面積模型問題,對(duì)于分析和轉(zhuǎn)化的能力要求較高,注意幾何概型中面積模型的概率計(jì)算方法,難度較難.9、B【解析】

成等比數(shù)列,可得,又,可得,利用余弦定理即可得出.【詳解】解:成等比數(shù)列,,又,,則故選B.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì)、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.10、D【解析】試題分析:解:運(yùn)行第一次:,不成立;運(yùn)行第二次:,不成立;運(yùn)行第三次:,不成立;運(yùn)行第四次:,不成立;運(yùn)行第四次:,成立;輸出所以應(yīng)選D.考點(diǎn):循環(huán)結(jié)構(gòu).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

,則,故答案為.12、4【解析】

根據(jù)回歸直線經(jīng)過數(shù)據(jù)的中心點(diǎn)可求.【詳解】設(shè)丟失的數(shù)據(jù)為,則,,把代入回歸方程可得,故答案為:4.【點(diǎn)睛】本題主要考查回歸直線的特征,明確回歸直線一定經(jīng)過樣本數(shù)據(jù)的中心點(diǎn)是求解本題的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).13、【解析】

由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.14、【解析】

根據(jù)一元二次不等式的解法直接求解可得結(jié)果.【詳解】由得:即不等式的解集為故答案為:【點(diǎn)睛】本題考查一元二次不等式的求解問題,屬于基礎(chǔ)題.15、【解析】.16、.【解析】試題分析:由題意,所以.考點(diǎn):三角函數(shù)運(yùn)算.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=0.06,平均值為12.25小時(shí)(2)【解析】

(1)由頻率分布直方圖可得第三組和第五組的頻率之和,第三組的頻率,由此能求出a和該樣本數(shù)據(jù)的平均數(shù),從而可估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值;(2)從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為A,B,C,D,E,F(xiàn),利用列舉法能求出從該6人中選拔2人,從而得到這2人來自不同組別的概率.【詳解】(1)由頻率分布直方圖可得第三組和第五組的頻率之和為,第三組的頻率為∴該樣本數(shù)據(jù)的平均數(shù)所以可估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值為小時(shí).(2)易得從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為,則從該6人中選拔2人的基本事件有:共15種,其中來自不同的組別的基本事件有:,共11種,∴這2人來自不同組別的概率為.【點(diǎn)睛】本題考查平均數(shù)、概率的求法,考查古典概型、頻率分布直方圖等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.18、(1);(2).【解析】

(1)利用正弦定理、三角形內(nèi)角和定理、兩角和的正弦公式,特殊角的三角函數(shù)值,化簡等式進(jìn)行求解即可(2)根據(jù)余弦定理,結(jié)合三角形面積公式、重要不等式進(jìn)行求解即可【詳解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面積的最大值為【點(diǎn)睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了重要不等式,考查了兩角和的正弦公式,考查了數(shù)學(xué)運(yùn)算能力.19、(1)見解析(2)(3)【解析】

(1)由平面,得出,由菱形的性質(zhì)得出,利用直線與平面垂直的判定定理得出平面,再利用平面與平面垂直的判定定理可證出結(jié)論;(2)先計(jì)算出三棱錐的體積,并計(jì)算出的面積,利用等體積法計(jì)算出三棱錐的高,即為點(diǎn)到平面的距離;(3)由(1)平面,于此得知為直線與平面所成的角,由,得出平面,于此計(jì)算出,然后在中計(jì)算出即可.【詳解】(1)平面,平面,,四邊形是菱形,,平面;又平面,所以平面平面.(2)設(shè),連結(jié),則,四邊形是菱形,,,,設(shè)點(diǎn)到平面的距離為平面,,,解得,即點(diǎn)到平面的距離為;(3)由(1)得平面,為與平面所成角,平面,,與平面所成角的正切值為.【點(diǎn)睛】本題考查平面與平面垂直的證明、點(diǎn)到平面的距離以及直線與平面所成的角,求解點(diǎn)到平面的距離,常用的方法是等體積法,將問題轉(zhuǎn)化為三棱錐的高來計(jì)算,考查空間想象能力與推理能力,屬于中等題.20、(1);(2)【解析】

(1)根據(jù)之間關(guān)系,可得結(jié)果(2)利用錯(cuò)位相減法,可得,然后使用分離參數(shù)的方法,根據(jù)單調(diào)性,計(jì)算其范圍,可得結(jié)果.【詳解】(1)當(dāng)時(shí),兩式相減得:當(dāng)時(shí),,不符合上式所以(2)令,所以所以令①②所以①-②:則化簡可得故,若存在,使得成立即存在,成立故,由,則所以可知數(shù)列在單調(diào)遞增所以,故【點(diǎn)睛】本題考查了之間關(guān)系,還考查了錯(cuò)位相減法求和,本題難點(diǎn)在于的求法,重點(diǎn)在于錯(cuò)位相減法的應(yīng)用,屬中檔題.21、(1);(2)3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論