




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法不正確的是()A.空間中,一組對邊平行且相等的四邊形是一定是平行四邊形;B.同一平面的兩條垂線一定共面;C.過直線上一點可以作無數(shù)條直線與這條直線垂直,且這些直線都在同一個平面內(nèi);D.過一條直線有且只有一個平面與已知平面垂直.2.某高中三個年級共有3000名學(xué)生,現(xiàn)采用分層抽樣的方法從高一、高二、高三年級的全體學(xué)生中抽取一個容量為30的樣本進行視力健康檢查,若抽到的高一年級學(xué)生人數(shù)與高二年級學(xué)生人數(shù)之比為3∶2,抽到高三年級學(xué)生10人,則該校高二年級學(xué)生人數(shù)為()A.600 B.800 C.1000 D.12003.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織()尺布.A. B. C. D.4.函數(shù)的對稱中心是()A. B. C. D.5.已知函數(shù)的圖像如圖所示,則和分別是()A. B. C. D.6.已知,,則()A. B. C. D.7.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.228.《九章算術(shù)》中,將四個面都為直角三角形的三棱錐稱之為鱉臑,若三棱錐為鱉臑,平面,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.9.已知實心鐵球的半徑為,將鐵球熔成一個底面半徑為、高為的圓柱,則()A. B. C. D.10.函數(shù)的圖象與函數(shù)的圖象的交點個數(shù)為()A.3 B.2 C.1 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)α為第二象限角,若sinα=3512.若,則______,______.13.設(shè)無窮等比數(shù)列的公比為,若,則__________________.14.若銳角滿足則______.15.某四棱錐的三視圖如圖所示,該四棱錐最長棱的棱長為___________。16.已知向量,,且與垂直,則的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,(1)求;(2)若,求.18.在中,內(nèi)角,,的對邊分別為,已知.(1)求角的大??;(2)若,且,求的面積.19.已知三角形ABC的頂點為,,,M為AB的中點.(1)求CM所在直線的方程;(2)求的面積.20.已知過點且斜率為的直線與圓:交于,兩點.(1)求斜率的取值范圍;(2)為坐標原點,求證:直線與的斜率之和為定值.21.已知數(shù)列中,,.(1)求證:是等差數(shù)列,并求的通項公式;(2)數(shù)列滿足,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】一組對邊平行就決定了共面;同一平面的兩條垂線互相平行,因而共面;這些直線都在同一個平面內(nèi)即直線的垂面;把書本的書脊垂直放在桌上就明確了2、B【解析】
根據(jù)題意可設(shè)抽到高一和高二年級學(xué)生人數(shù)分別為和,則,繼而算出抽到的各年級人數(shù),再根據(jù)分層抽樣的原理可以推得該校高二年級的人數(shù).【詳解】根據(jù)題意可設(shè)抽到高一和高二年級學(xué)生人數(shù)分別為和,則,即,所以高一年級和高二年級抽到的人數(shù)分別是12人和8人,則該校高二年級學(xué)生人數(shù)為人.故選:.【點睛】本題考查分層抽樣的方法,屬于容易題.3、B【解析】由題可知每天織的布的多少構(gòu)成等差數(shù)列,其中第一天為首項,一月按30天計可得,從第2天起每天比前一天多織的即為公差.又,解得.故本題選B.4、C【解析】,設(shè)是奇函數(shù),其圖象關(guān)于原點對稱,而函數(shù)的圖象可由的圖象向右平移一個單位,向下平移兩個單位得到,所以函數(shù)的圖象關(guān)于點對稱,故選C.5、C【解析】
通過識別圖像,先求,再求周期,將代入求即可【詳解】由圖可知:,,將代入得,又,,故故選C【點睛】本題考查通過三角函數(shù)識圖求解解析式,屬于基礎(chǔ)題6、A【解析】
由,代入運算即可得解.【詳解】解:因為,,所以.故選:A.【點睛】本題考查了兩角差的正切公式,屬基礎(chǔ)題.7、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點睛】本題考查了正弦定理,意在考查學(xué)生的計算能力.8、C【解析】由題意,PA⊥面ABC,則為直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因為為直角三角形,經(jīng)分析只能,故,三棱錐的外接球的圓心為PC的中點,所以則球的表面積為.故選C.9、B【解析】
根據(jù)變化前后體積相同計算得到答案.【詳解】故答案選B【點睛】本題考查了球體積,圓柱體積,抓住變化前后體積不變是解題的關(guān)鍵.10、B【解析】由已知g(x)=(x-2)2+1,所以其頂點為(2,1),又f(2)=2ln2∈(1,2),可知點(2,1)位于函數(shù)f(x)=2lnx圖象的下方,故函數(shù)f(x)=2lnx的圖象與函數(shù)g(x)=x2-4x+5的圖象有2個交點.二、填空題:本大題共6小題,每小題5分,共30分。11、-【解析】
先求出cosα,再利用二倍角公式求sin2α【詳解】因為α為第二象限角,若sinα=所以cosα=所以sin2α故答案為-【點睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.12、【解析】
對極限表達式進行整理,得到,由此作出判斷,即可得出參數(shù)的值.【詳解】因為所以,解得:.故答案為:;【點睛】本題主要考查由極限值求參數(shù)的問題,熟記極限運算法則即可,屬于常考題型.13、【解析】
由可知,算出用表示的極限,再利用性質(zhì)計算得出即可.【詳解】顯然公比不為1,所以公比為的等比數(shù)列求和公式,且,故.此時當時,求和極限為,所以,故,所以,故,又,故.故答案為:.【點睛】本題主要考查等比數(shù)列求和公式,當時.14、【解析】
由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角差的余弦公式即可計算得解.【詳解】、為銳角,,,,,,.故答案為:.【點睛】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.15、3;【解析】
由三視圖還原幾何體,根據(jù)垂直關(guān)系和勾股定理可求得各棱長,從而得到最長棱的長度.【詳解】由三視圖可得幾何體如下圖所示:其中平面,,,,,,四棱錐最長棱為本題正確結(jié)果:【點睛】本題考查由三視圖還原幾何體的相關(guān)問題,關(guān)鍵是能夠準確還原幾何體中的長度和垂直關(guān)系,從而確定最長棱.16、【解析】
根據(jù)與垂直即可得出,進行數(shù)量積的坐標運算即可求出x的值.【詳解】;;.故答案為.【點睛】本題考查向量垂直的充要條件,以及向量數(shù)量積的坐標運算,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)兩邊平方可得,根據(jù)同角公式可得,;(2)根據(jù)兩角和的正切公式,計算可得結(jié)果.【詳解】(1)因為,所以,即.因為,所以,所以,故.(2)因為,所以,所以.【點睛】本題考查了兩角同角公式,二倍角正弦公式,兩角和的正切公式,屬于基礎(chǔ)題.18、(1);(2).【解析】
(1)由二倍角公式得,求得則角可求;(2),得,由正弦定理得,再結(jié)合余弦定理得則面積可求【詳解】(1)因為,所以,解得,因為,所以;(2)因為,所以,由正弦定理得所以,由余弦定理,,所以,所以.【點睛】本題考查二倍角公式,正余弦定理解三角形,準確計算是關(guān)鍵,是基礎(chǔ)題19、(1)(2)【解析】
(1)先求出點M的坐標,再寫出直線的兩點式方程化簡即得解;(2)求出和點A到直線CM的距離即得解.【詳解】(1)AB中點M的坐標是,所以中線CM所在直線的方程是,即.(2),因為直線CM的方程是,所以點A到直線CM的距離是,又,所以.【點睛】本題主要考查直線方程的求法,考查兩點間的距離的計算和點到直線的距離的計算,意在考查學(xué)生對這些知識的理解掌握水平.20、(1)(2)見解析【解析】
(1)根據(jù)圓心到直線的距離小于半徑得到答案.(2)聯(lián)立直線與圓方程:.韋達定理得計算,化簡得到答案.【詳解】解:(1)直線的方程為:即.由得圓心,半徑.直線與圓相交得,即.解得.所以斜率的取值范圍為.(2)聯(lián)立直線與圓方程:.消去整理得.設(shè),,根據(jù)韋達定理得.則.∴直線與的斜率之和為定值1.【點睛】本題考查了斜率的取值范圍,圓錐曲線的定值問題,意在考查學(xué)生的計算能力.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保設(shè)施運維合同樣本
- 專項信托外匯固定資產(chǎn)貸款合作合同
- 玫瑰貸記卡動產(chǎn)質(zhì)押合同協(xié)議
- 員工合同解除合同書
- 贍養(yǎng)義務(wù)履行合同范文
- 聯(lián)合購房按揭貸款合同
- 精簡版商業(yè)租賃合同范本
- 租賃合同季度范本:機械設(shè)備篇
- 南湖區(qū):合同科技創(chuàng)新與合作新機遇
- 出租車股份合作合同條款
- 干式變壓器培訓(xùn)課件
- 2023年上海中考語文試卷(附答案)
- 理發(fā)店業(yè)務(wù)轉(zhuǎn)讓協(xié)議書范本
- 2024年江蘇省中學(xué)生生物學(xué)奧林匹克初賽理論試題
- 環(huán)境年度報告
- 生產(chǎn)流水線的規(guī)劃方案
- 小針刀療法教學(xué)課件
- 打造寫生基地方案
- 寫作:廣告詞-【中職專用】高二語文高效課堂(高教版2023·職業(yè)模塊)
- 爆發(fā)性心肌炎護理查房課件
- 銷售人員人才畫像
評論
0/150
提交評論