版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第第頁2022-2023學(xué)年黑龍江省哈爾濱市道里區(qū)七年級(下)期末數(shù)學(xué)試卷(五四學(xué)制)(含解析)2022-2023學(xué)年黑龍江省哈爾濱市道里區(qū)七年級(下)期末數(shù)學(xué)試卷(五四學(xué)制)
一、選擇題(本大題共10小題,共30.0分。在每小題列出的選項中,選出符合題目的一項)
1.二元一次方程()
A.只有一個解B.只有兩個解C.無數(shù)個解D.無解
2.下列長度的三條線段能組成三角形的是()
A.,,B.,,C.,,D.,,
3.在如圖中,正確畫出的邊上的高的是()
A.B.C.D.
4.已知,下面四個不等式中不正確的是()
A.B.C.D.
5.在統(tǒng)計中,樣本的方差可以近似地反映總體的()
A.最大值與最小值B.平均狀態(tài)C.分布規(guī)律D.波動大小
6.一個多邊形的每個內(nèi)角都相等,這個多邊形的外角不可能是()
A.B.C.D.
7.如圖,將沿翻折,點落在上的點處,連接,若,,則為()
A.B.C.D.
8.在平面直角坐標(biāo)系中,在第二象限,則的取值范圍是()
A.B.C.D.
9.足球比賽的得分規(guī)則如下:勝一場得分,平一場得分,負(fù)一場得分.某足球隊一共進(jìn)行了場比賽,其中負(fù)了場,共得分.設(shè)該球隊勝了場,平了場,依題意可列方程組()
A.B.
C.D.
10.,為實數(shù),若關(guān)于,的方程組無解,則關(guān)于的不等式的解集是()
A.B.C.D.
二、填空題(本大題共8小題,共24.0分)
11.如圖,工程建筑中的屋頂鋼架經(jīng)常采用三角形的結(jié)構(gòu),其中的數(shù)學(xué)道理是______.
12.如果,則的范圍是______.
13.已知,是方程的解,則的值為______.
14.如果一個多邊形的內(nèi)角和是外角和的倍,則這個多邊形是______邊形.
15.不等式組的解集是,那么的取值范圍是______.
16.如圖,的兩條中線,交于點,若的面積為,則四邊形的面積是______.
17.在一次中學(xué)生田徑運動會上,參加男子跳高的名運動員的成績?nèi)绫硭荆?/p>
成績單位:米
人數(shù)
這些運動員成績的中位數(shù)為______.
18.的角平分線與角平分線交于點,連接,若,,則為______度
三、解答題(本大題共7小題,共56.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
19.本小題分
解不等式:
;
.
20.本小題分
解方程組:
;
.
21.本小題分
如圖,為正五邊形.
求的度數(shù);
連接,,求證:.
22.本小題分
某班名同學(xué)進(jìn)行科普知識競賽,根據(jù)名同學(xué)的成績繪成如圖所示的統(tǒng)計圖.
這名同學(xué)競賽成績的眾數(shù)為多少直接寫答案,不必說明理由?
求這名同學(xué)的平均成績?
甲同學(xué)在競賽前練習(xí)的次成績分別為:,,,,單位:分,求這個數(shù)據(jù)的方差.
23.本小題分
取哪些整數(shù)值時,不等式與都成立?
24.本小題分
四邊形,,點在上,連接,點在上,連接,.
如圖,求證:;
如圖,點在上,連接,,,,求證:;
如圖,在的條件下,過點作的平行線交于點,,,求的值.
25.本小題分
在平面直角坐標(biāo)系中,點為坐標(biāo)原點,點在軸上,點的橫坐標(biāo)為,點在軸上,點的縱坐標(biāo)為,實數(shù),滿足方程組.
求,的值;
如圖,過點作的垂線,點為垂足,點在上,線段的長為,的面積為,用含的式子表示,不要求寫出的范圍;
在的條件下,如圖,點在第二象限,,連接,,,求的長.
答案和解析
1.【答案】
【解析】解:根據(jù)題意,方程的有無數(shù)個解,故C選項正確,
故選:.
根據(jù)二元一次方程的解的意義即可得解.
本題主要考查了二元一次方程的解的意義,解題時要能理解題意,分析未知數(shù)間的關(guān)系.
2.【答案】
【解析】解:、,不符合三角形三邊關(guān)系,故不能構(gòu)成三角形,不符合題意;
B、,不符合三角形三邊關(guān)系,故不能構(gòu)成三角形,不符合題意;
C、,不符合三角形三邊關(guān)系,故不能構(gòu)成三角形,不符合題意;
D、,符合三角形三邊關(guān)系,能構(gòu)成三角形,符合題意.
故選:.
根據(jù)三角形三邊關(guān)系可進(jìn)行求解.
本題主要考查三角形三邊關(guān)系,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.
3.【答案】
【解析】解:由題可得,過點作的垂線段,垂足為,則是的邊上的高,
所以選項符合題意,
故選:.
過三角形的頂點向?qū)呑鞔咕€,頂點與垂足之間的線段叫做三角形的高,據(jù)此解答.
本題考查了三角形的高線,熟記概念是解題的關(guān)鍵.鈍角三角形有兩條高在三角形外部,一條高在三角形內(nèi)部,三條高所在直線相交于三角形外一點.
4.【答案】
【解析】解:、不等式的兩邊都乘以,不等號的方向不變,故A正確;
B、不等式的兩邊都加,不等號的方向不變,故B正確;
C、不等式的兩邊都乘以,不等號的方向改變,故C錯誤;
D、不等式的兩邊都減,不等號的方向不變,故D正確;
故選:.
根據(jù)不等式的性質(zhì),可得答案.
主要考查了不等式的基本性質(zhì).“”是很特殊的一個數(shù),因此,解答不等式的問題時,應(yīng)密切關(guān)注“”存在與否,以防掉進(jìn)“”的陷阱;不等式兩邊加或減同一個數(shù)或式子,不等號的方向不變,不等式兩邊乘或除以同一個正數(shù),不等號的方向不變,不等式兩邊乘或除以同一個負(fù)數(shù),不等號的方向改變.
5.【答案】
【解析】解:在統(tǒng)計中,方差可以近似地反映數(shù)據(jù)的波動大小,
故選:.
根據(jù)方差的意義:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越差;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好求解即可.
本題主要考查方差,解題的關(guān)鍵是掌握方差的意義.
6.【答案】
【解析】解:由題意得,這個多邊形的每一個外角均相等.
每一個外角的度數(shù)整除.
、、均能整除,不能整除,
選項C符合題意.
故選:.
根據(jù)多邊形的外角與內(nèi)角的關(guān)系解決此題.
本題主要考查多邊形的外角與內(nèi)角,熟練掌握多邊形的外角與內(nèi)角的關(guān)系是解決本題的關(guān)鍵.
7.【答案】
【解析】解:,
,
由折疊可得,
又,
,
由折疊可得,
故選:.
依據(jù)鄰補(bǔ)角可得的度數(shù),再根據(jù)折疊即可得到的度數(shù),最后根據(jù)三角形內(nèi)角和定理以及折疊的性質(zhì),即可得到的度數(shù).
本題主要考查了折疊問題以及三角形內(nèi)角和定理的運用,折疊是一種對稱變換,它屬于軸對稱,關(guān)鍵是掌握折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
8.【答案】
【解析】解:在第二象限,
,
解不等式得:,
解不等式得:,
原不等式組的解集為:,
故選:.
先根據(jù)平面直角坐標(biāo)系中第二象限點的坐標(biāo)特征可得:,然后按照解一元一次不等式組的步驟,進(jìn)行計算即可解答.
本題考查了解一元一次不等式組,點的坐標(biāo),熟練掌握解一元一次不等式組的步驟是解題的關(guān)鍵.
9.【答案】
【解析】分析
設(shè)該球隊勝了場,平了場,根據(jù)進(jìn)行場比賽,其中負(fù)了場,共得分,列方程組.
本題考查了由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程組.
詳解
解:設(shè)該球隊勝了場,平了場,
由題意得.
故選A.
10.【答案】
【解析】解:由,得
,代入,
得,解得.
該方程組無解,
,
,
.
關(guān)于的不等式的解集為.
故選:.
方程組無解,說明其解的分母為,由此得到與的關(guān)系,從而判斷的正負(fù),進(jìn)而可以求解關(guān)于的不等式的解集.
本題考查解二元一次方程組,比較簡單,但內(nèi)容極其重要,必須能夠熟練掌握.
11.【答案】三角形的穩(wěn)定性
【解析】解:工程建筑中經(jīng)常采用三角形的結(jié)構(gòu),其中的數(shù)學(xué)道理是三角形具有穩(wěn)定性,
故答案為:三角形具有穩(wěn)定性.
根據(jù)三角形具有穩(wěn)定性解答即可.
此題主要考查了三角形的穩(wěn)定性,是需要記憶的內(nèi)容.
12.【答案】
【解析】解:,
,
解得,
故答案為:.
根據(jù)絕對值的取值得出結(jié)論即可.
本題主要考查絕對值的知識,熟練掌握絕對值的計算是解題的關(guān)鍵.
13.【答案】
【解析】解:把,代入二元一次方程,得
,
解得.
故答案為:.
根據(jù)方程的解的定義,把這對數(shù)值代入方程,那么得到一個含有未知數(shù)的一元一次方程,從而求出的值.
此題考查的是二元一次方程的解,解題關(guān)鍵是把方程的解代入原方程,使原方程轉(zhuǎn)化為以系數(shù)為未知數(shù)的方程.一組數(shù)是方程的解,那么它一定滿足這個方程,利用方程的解的定義可以求方程中其他字母的值.
14.【答案】六
【解析】解:設(shè)這個多邊形為邊形,由題意得,
,
解得,
即這個多邊形為六邊形,
故答案為:六.
根據(jù)多邊形的內(nèi)角和與外角和的計算方法列方程求解即可.
本題考查多邊形的內(nèi)角與外角,掌握多邊形內(nèi)角和、外角和的計算方法是正確解答的前提.
15.【答案】
【解析】解:,
解不等式得:,
解不等式得:,
不等式組的解集是,
,
故答案為:.
按照解一元一次不等式組的步驟,進(jìn)行計算即可解答.
本題考查了解一元一次不等式組,熟練掌握解一元一次不等式組的步驟是解題的關(guān)鍵.
16.【答案】
【解析】解:連接,,設(shè),如圖所示:
、為的兩條中線,
,,為的中位線,
和等底同高,和等底同高,
,,
為的中位線,
,
和同底等高,
,
即:,
,
,
,
,
和等底同高,
,
,
,
.
故答案為:.
連接,,設(shè),先證,,再由得,進(jìn)而得,則,然后證,則,據(jù)此即可得出答案.
此題主要考查了是三角形的中線和三角形的中位線,解答此題的關(guān)鍵是理解平行線間的距離;三角形的中位線平行于第三邊并且等于第三邊的一半;同底或等底同高或等高的兩個三角形的面積相等.
17.【答案】
【解析】解:將這名運動員的跳高成績從小到大排列,處在第、位的兩個數(shù)的平均數(shù)為,
因此中位數(shù)是,
故答案為:.
根據(jù)中位數(shù)的定義進(jìn)行計算即可.
本題考查中位數(shù),理解中位數(shù)的定義是正確解答的關(guān)鍵.
18.【答案】
【解析】解:如圖,作于,于,于,
的角平分線與角平分線交于點,
,,
,
平分.
在與中,
,
≌,
,
,
,
.
、是的角平分線,
,
,
,
.
故答案為:.
作于,于,于,根據(jù)角平分線的性質(zhì)與判定可證平分利用證明≌,得出,再證明根據(jù)角平分線的定義求出,進(jìn)而求出.
本題考查了角平分線的性質(zhì)與判定,全等三角形的判定與性質(zhì),角平分線定義,三角形內(nèi)角和定理,綜合性較強(qiáng),準(zhǔn)確作出輔助線是解題的關(guān)鍵.
19.【答案】解:,
,
,
;
,
,
,
,
,
.
【解析】不等式移項,合并同類項,化系數(shù)為即可;
不等式去分母,去括號,移項,合并同類項,化系數(shù)為即可.
本題考查了解一元一次不等式,掌握解一元一次不等式的基本步驟是解答本題的關(guān)鍵.
20.【答案】解:,
把代入得:,
解得:,
把代入得:,
故原方程組的解是:;
,
整理得:,
得:,
得:,
得:,
解得:,
把代入得:,
解得:,
故原方程組的解是:.
【解析】利用代入消元法進(jìn)行求解即可;
利用加減消元法進(jìn)行求解即可.
本題主要考查解二元一次方程組,解答的關(guān)鍵是熟練掌握解二元一次方程組的方法.
21.【答案】解:正五邊形的每一個內(nèi)角的度數(shù)為:,
即;
五邊形是正五邊形,
,,
≌,
.
【解析】根據(jù)正五邊形的性質(zhì)以及內(nèi)角和的計算方法進(jìn)行計算即可;
利用正五邊形的性質(zhì)以及全等三角形的判定和性質(zhì)進(jìn)行解答即可.
本題考查正多邊形和圓,掌握正五邊形的性質(zhì)以及全等三角形的判定和性質(zhì)是正確解答的關(guān)鍵.
22.【答案】解:由圖可知,這名同學(xué)競賽成績的眾數(shù)為;
分,
答:這名同學(xué)的平均成績?yōu)榉郑?/p>
,
答:這個數(shù)據(jù)的方差為.
【解析】根據(jù)眾數(shù)的定義即可得出答案;
根據(jù)平均數(shù)公式計算即可;
根據(jù)方差公式計算即可.
本題考查了加權(quán)平均數(shù)、眾數(shù)和方差,熟練掌握加權(quán)平均數(shù)、眾數(shù)和方差的定義和計算方法是關(guān)鍵.
23.【答案】解:解不等式組,得,
所以可取的整數(shù)值是,,.
即當(dāng)為,,時,不等式與都成立.
【解析】先求出不等式組的解集,再求出不等式組的整數(shù)解即可.
本題考查了解一元一次不等式組和不等式組的整數(shù)解,能求出不等式組的解集是解此題的關(guān)鍵.
24.【答案】證明:,
,
,
,
,
,
,
.
證明:,,
,
,,
,
,
,
,
在和中,
,
≌,
.
解:如圖,延長于點,使,連接,則,
在和中,
,
≌,
,
,,
,
作于點,交的延長線于點,則,
在和中,
,
≌,
,,
,,
,
在和中,
,
≌,
,
,
,
,
,,且,
,
,
,
在和中,
,
≌,
,
的值為.
【解析】由,得,則,由,得,所以;
由,,得,由,,得,則,而,所以,即可證明≌,得;
延長于點,使,連接,可證明≌,得,由,,得,可證明≌,得,,再證明≌,得,可推導(dǎo)出,則,進(jìn)而證明≌,則.
此題重點考查等角的余角相等、三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和、等式的性質(zhì)、全等三角形的判定與性質(zhì)等知識,此題綜合性強(qiáng),難度較大,屬于考試壓軸題.
25.【答案】解:,
解得:,
,;
如圖,過點作于點,
,,
,
,
,
,
,
,線段的長為,
;
,
,
,
,
如圖,過點作于點,連接,
,,
,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024金融科技服務(wù)平臺業(yè)務(wù)協(xié)作合同
- 2025年度智能溫室大棚建設(shè)與生態(tài)農(nóng)業(yè)示范區(qū)承包合同4篇
- 2024鐵路工程勘察設(shè)計合同范本3篇
- 2025年度物流園區(qū)車位購置及倉儲服務(wù)合同4篇
- 2024水保編制技術(shù)服務(wù)合同-水利設(shè)施養(yǎng)護(hù)與管理3篇
- 2024酒銷售合同范本
- 2024版煤炭運輸合同薦
- 2025年度上市公司股權(quán)轉(zhuǎn)讓代辦服務(wù)協(xié)議4篇
- 2025年度商鋪出售合同模板(含廣告位使用權(quán))4篇
- 2025年度環(huán)保技術(shù)研發(fā)與應(yīng)用承包協(xié)議6篇
- 神經(jīng)外科進(jìn)修匯報課件
- 2024老年人靜脈血栓栓塞癥防治中國專家共識(完整版)
- 騰訊營銷師認(rèn)證考試題庫(附答案)
- 鄰近鐵路營業(yè)線施工安全監(jiān)測技術(shù)規(guī)程 (TB 10314-2021)
- 四年級上冊脫式計算100題及答案
- 資本市場與財務(wù)管理
- 河南近10年中考真題數(shù)學(xué)含答案(2023-2014)
- 八年級上學(xué)期期末家長會課件
- 2024年大學(xué)試題(宗教學(xué))-佛教文化歷年考試高頻考點試題附帶答案
- HGE系列電梯安裝調(diào)試手冊(ELS05系統(tǒng)SW00004269,A.4 )
- 尤文肉瘤的護(hù)理查房
評論
0/150
提交評論