版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
/journal/designs
Designs2023,7,100.
/10.3390/designs7040100
[eess.SY]11Aug2023
Review
SafetyinTrafficManagementSystems:AComprehensiveSurveyWenluDu,AnkanDash,JingLi,HuaWeiandGuilingWang*
Citation:Du,W.;Dash,A.;Li,J.;Wei,H.;Wang,G.SafetyinTraffic
ManagementSystems:AComprehensiveSurvey.Designs2023,7,100.
/10.3390/
designs7040100
arXiv:2308.06204v1
AcademicEditor:RobertoGabbrielli
Received:4June2023
Revised:1July2023
Accepted:13July2023
Published:10August2023
Copyright:?2023bytheauthors.LicenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccessarticledistributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://
/licenses/by/
4.0/).
YingWuCollegeofComputing,NewJerseyInstituteofTechnology,Newark,NJ07102,USA;wd48@(W.D.);ad892@(A.D.);jingli@(J.L.);hua.wei@(H.W.)
*Correspondence:gwang@
Abstract:Trafficmanagementsystemsplayavitalroleinensuringsafeandefficienttransportationonroads.However,theuseofadvancedtechnologiesintrafficmanagementsystemshasintroducednewsafetychallenges.Therefore,itisimportanttoensurethesafetyofthesesystemstopreventaccidentsandminimizetheirimpactonroadusers.Inthissurvey,weprovideacomprehensivereviewoftheliteratureonsafetyintrafficmanagementsystems.Specifically,wediscussthedifferentsafetyissuesthatariseintrafficmanagementsystems,thecurrentstateofresearchonsafetyinthesesystems,andthetechniquesandmethodsproposedtoensurethesafetyofthesesystems.Wealsoidentifythelimitationsoftheexistingresearchandsuggestfutureresearchdirections.
Keywords:survey;trafficsafety;proactivesafetymethods;safetyanalysis;crashprediction;crashriskassessment;deeplearning;machinelearning;statisticalanalysismethods
1.Introduction
AsaddressedbytheU.S.DepartmentofTransportationStrategicPlanFY2022–2026(
/dot-strategic-plan
)(accessedon14March2023),makingthetransportationsystemsaferforallpeopleisstillatopstrategicgoal.About95%oftransportationfatalitiesintheUSAoccuronthecountry’sstreets,roads,andhighways,andthenumberofdeathsisincreasing.Trafficsafetyisofparamountimportance,particularlyintheeraofemergingtechnologieslikeautomatedvehiclesandconnectedvehicles[
1
].Asthesetechnologiescontinuetoevolveandbecomemoreprevalentontheroads,thepotentialforsafertransportationincreasessignificantly.Automatedvehicleshavethepotentialtominimizehumanerror,whichisresponsibleforthemajorityoftrafficaccidents.Withtheiradvancedsensorsandalgorithms,theycandetectandrespondtopotentialhazardsmoreswiftlyandeffectivelythanhumandrivers.Similarly,connectedvehiclesenablereal-timecommunicationbetweenvehiclesandinfrastructure,allowingforenhancedawarenessandcoordinationontheroad.Thisconnectivityfacilitatestheexchangeofcriticalinformation,suchastrafficconditions,weatherupdates,androadhazards,therebyenablingdriverstomakeinformeddecisionsandavoidpotentialdangers.Byembracingandprioritizingtrafficsafetyinconjunctionwiththeseadvancedtechnologies,wecanstrivetowardsafuturewithreducedaccidents,injuries,andfatalitiesontheroadways,ultimatelycreatingasaferandmoreefficienttransportationsystemforall.
Inthepastfiveyears,researchershavemadesignificanteffortsinthefieldoftrafficsafety[
2
–
4
].Someresearchers,particularlythoseincivilengineering,havefocusedonstatisticalanalysistoidentifyandprioritizecountermeasures.Byanalyzinghistoricaldatasetsandrecords,theyaimtounderstandthecause-and-effectrelationshipsanddevelopeffectivestrategies.Forinstance,theyexaminecontributoryfactorssuchasadverseweatherconditionsthatincreasetheriskofaccidents[
5
–
7
].Thisanalysishelpsindevisingcontrolplans,includingdriverwarnings,toreducecrashratesduringextremeweatherevents.Ontheotherhand,interdisciplinaryresearchersaimtoprovideaccurateriskinformationbyutilizingmachinelearninganddeeplearningmodels[
4
].Theyworktowardsdevelopingreal-timecrashriskpredictionsystems.However,whenitcomestooperationalaspects,
2of30
Designs2023,7,100
lessattentionhasbeengiventoexplainingtheimpactofvariablesandmoreemphasishasbeenplacedonimprovingpredictionaccuracy.Techniqueslikedeepneuralnetworks,generativemodels,reinforcementlearning,ensemblemethodslikeXGBoost,andcomputervision-basedalgorithmshavegainedpopularityinthisregard.Thissurveyprovidesanoverviewoftheadvancementsinthesetwodirections,summarizingthestate-of-the-artresearchinthefield.
Furthermore,wehavecategorizedtherecentliteraturebasedonthespecificareasofanalysisorcontrol.Putsimply,someresearchersconcentrateonenhancingtheoverallsafetyofanentiretrafficnetworkoraspecificregion[
8
,
9
],suchasdowntownNewYorkCity.Othersaddresscrash-relatedissuesoccurringonhighwaysegments[
10
],onramp/offrampsections[
11
],weavingareas[
12
],andcurvedsegments[
13
].Additionally,effortshavebeenmadetoimprovesafetyatintersections[
14
].Asautomatedvehicles,connectedvehicles,andconnectedandautonomousvehicle(CAV)technologycontinuetoemerge,alongwithadvancedfeatureslikeautomaticemergencybraking(AEB)withpedestriandetection,adaptivecruisecontrol(ACC)systems,andadvanceddriverassistancesystems(ADAS),studieshavefocusedonthevehiclesideaswell[
3
].Forinstance,researchersevaluatethereal-timeriskofcollisionsinscenariosinvolvingcarfollowing[
15
]orplatooning[
16
].Inthissurvey,wealsoprovideanoverviewofexistingresearchintheseaspects.
Finally,weconcludebyaddressingthepresentchallengesandlimitations,aimingtoprovideaclearunderstandingofareasthatcanbeimprovedinthefuture.Throughourcomprehensiveliteraturereview,weobservedthatcertainlimitationsareprevalentandremainunresolvedtothisday.Onesuchchallengeistheimbalanceddataproblem[
17
],whichsignificantlycomplicatespredictivetasksduetothelimitedrepresentationofcrashdatawithinthedataset.Manyresearchershighlightthedifficultyincollectinglabeledacci-dentdatainreal-worldscenarios[
10
].Anothercommonissueisthelackofgeneralizabilitytoreal-worldconditions[
18
],assomeproposedmodelsdemonstratesatisfactoryperfor-manceonlyinsimulatedenvironments,withlimitedevidenceofsuccessfuldeploymentinreal-worldsettings.Itisessentialtorecognizeandaddressthesechallengesinordertoadvancethefieldoftrafficsafetyandimprovetheapplicabilityoftheresearchfindingsinpracticalcontexts.
Itisimportanttonotethedivergencebetweentheresearchconductedinthefieldofcivilengineeringandinterdisciplinaryresearch,particularlyincomputerscience.Civilen-gineeringresearchersoftenemploystatisticalanalysisandsensitivityanalysistoexplorethecorrelationbetweenvariablesandtheirimpactonsafety.Theyfrequentlyutilizereal-worlddatasetsandconductfieldteststoobtainempiricalevidence.Conversely,interdisciplinaryresearcherstendtoprioritizethedesignofmodelsusingsimulatedenvironments,whichmayormaynottranslateeffectivelyintopracticalapplications.However,thereisagrowingtrendtowardsintegratingdomain-specificruleswithpopularneuralnetworkmodelstoleveragethestrengthsofbothapproaches[
19
].Thiscollaborativeapproachaimstobridgethegapandcapitalizeonthebenefitsofferedbycombiningdomainknowledgewiththecapabilitiesofneuralnetworks.
Thesurveypapermakesthefollowingcontributions:
?Athoroughexaminationoftheliteraturepublishedwithinthelastfiveyearsiscon-ducted,allowingforanaccuratedepictionoftheprevailingresearchtrendsduringthisperiod.
?Theliteraturecollectionexclusivelyfocusesontop-tiervenues,ensuringthattheselectedworksarehighlyrepresentativeofboththedomainfieldandcomputersciencefield.Thisprovidesvaluableinsightsforresearchersinterestedintrafficsafetyapplications.
?Wecategorizetheworksintotwodistinctcategoriesofanalysisandcontrolandprovidecorrespondingsummariesthatoutlinetheresearchobjectivesandlimitations.Thiscategorizationoffersinspirationandguidanceforfutureresearchersinthefield.
3of30
Designs2023,7,100
2.ReviewMethod
Inthissection,weoutlinetheprocessofcollectingourreviewpapers.Weprovidedetailsregardingthenumberofpapersreviewed,theirrespectivesources,andtherelevantstatistics.Forinstance,wehighlightthedistributionofpapersbetweenthecomputerscienceandtransportationfields,sheddinglightontherepresentationfromeachdiscipline. Toinitiateourpapercollection,weconductedkeywordsearchesfortermssuchasroadsafety,accidentprevention,accidentavoidance,crashrisk,andtrafficaccidentacrosstop-tiervenuesinboththetraditionaltransportationfieldandcomputerscienceandrelateddisciplines.Thesurveycoversaspanoffiveyears,specificallyfrom1January2019to
1June2023.Figure
1
presentsagraphicalrepresentationofthepublicationdistributionduringthisfive-yearperiod,distinguishingbetweenpublicationsinthetransportationfieldandthoseinthecomputersciencefield.Whilecomputerscienceencompassesdiversere-searchareas,wediscoveredseveralrenownedvenueswherecomputerscientistscontributetheirwork,applyingproposedmodelstothetransportationdomainanddemonstratingtheirpracticality.Althoughthenumberofpublicationsincomputerscienceisrelativelysmallcomparedtothatinthetransportationfield,thereisanevidentupwardtrendinpublicationsovertheyears,indicatingthepressingneedtoenhancesafetymeasures.Thisupwardtrajectorysuggeststhattheriseinpublicationswilllikelycontinueinthefuture.
Figure1.Collectedpaperpublicationsindifferentfieldswithinthepastfiveyears.
Figure
2
displaysacomprehensivelistofthetop-tiervenuesutilizedinthissurvey,alongwiththecorrespondingpublicationcountsforeachvenue.Inthetransportationfield,weobservedthatIEEETransactionsonIntelligentTransportationSystemsaccumulatedthehighestnumberofpublications,suggestingitsprominenceamongresearchersfordisseminatingtheirwork.Additionally,conferencesinroboticengineeringalsocontributedseveralpublications,withaprimaryfocusonautonomousdrivingandrelatedtechniques.
Figure2.Collectedpaperpublicationsbypublicationvenueswithinthepastfiveyears.
4of30
Designs2023,7,100
3.SurveyingtheLiterature:AnIn-DepthExploration
Basedontheanalysisofthesurveyedpapers,wecategorizedthemintofourdistinctsectionsasshowninTables
1
and
2
.Firstly,wehighlighttherecurringproblemsortopicsthatfrequentlyappearedinthepublications.Secondly,weprovideasummaryoftheareaswheresafetyimprovementsareemphasized,suchasintersectionsorfreeways.Thirdly,weexaminethespecifictargetsthatresearchersfocusedonintheireffortstoenhancesafety,suchasconnectedvehicles,andwecompileacomprehensivelistofthetrendingtechniques
discussedinthesurveyedpapers.
Table1.Keywordsummary.
Topics
?
?
?
?
?
?
?
?
IdentificationofDangerousVehiclesAccidentForecasting
IdentificationofCrashRisk
CrashRiskAssessment
Real-timeProactiveRoadSafety
ForwardCollisionAvoidance
Rear-endCollisionAvoidanceSecondaryCrashLikelihoodPrediction
?
?
?
?
?
?
?
?
CyclistCrashRatesAssessment
RareEventModeling
Inter-vehicleCrashRiskAnalysisIdentificationofHigh-riskLocationsTrajectoryPredictions
TrajectoryCollisionAvoidancePredictivePlatoonControlPedestrianOccupancyForecasting
?
Spatial–temporalCorrelations
?
Signal-vehicleCoupledControl
?
Minute-Level
?
CarFollowing
?
DriverBrakingBehavior
?
Take-overPerformance
?
Driver’sEvasiveBehavior
?
Left-turnatSignalizedIntersections
?
Heavy-truckRisk
?
Safety-awareAdaptiveCruiseControl
?
MovingVehicleGroups
?
AdaptiveMergingControl
?
School-agedChildren
?
LaneKeepingSystem
?
Evacuation
?
In-vehicleWarning
?
OldDrivers
?
Context-aware
?
SocialVulnerability
?
Multitask
?
DrivingImpairmentsandDistractions
?
HumanDriverImitation
?
PedestrianCrashRiskAnalysis
?
DashcamVideos
?
AutomaticEmergencyBrakingSystems
?
DriverDrowsinessMonitoring
?
Precipitation
?
HazyWeatherConditions
?
SurrogateSafetyMetrics
?
On-rampMergingControl
?
AdaptiveTrafficSignalControl
?
PreferencesofAggressiveness
Uponcarefulobservation,weidentifiedcrashriskpredictionasthemostextensivelyaddressedtopicamongthesurveyedpapers.Itoccupiedasignificantportionofthelitera-turereviewed.Furthermore,wenoticedagrowingtrendoffocusingonspecificconditionsorscenarios,suchasheavy-truckrisk,school-agedchildren,evacuation,extremeweather,andmore.Thesepapersaimedtoaddresssafetyissueswithinthesespecificsituationsandproposemeasuresforimprovement.Withtheadventofadvancedtechnologies,safetyconcernsrequirereassessmentandreevaluation.Someworksdelvedintothesafetyimpli-cationsofemergingtechnologies,suchasanalyzingtake-overperformanceorexaminingtheimpactofautomaticemergencybrakingsystemsonoverallsafety.Additionally,cer-tainhigh-riskareasthatfrequentlyexperienceaccidentshavegarneredattentionfromresearchers,leadingtofocusedinvestigationsontopicslikeon-rampmergingcontrol.Moreover,newsurrogatesafetymetricshaveemergedashighly-discussedsubjectswithintheliterature,furtherreflectingtheshiftinglandscapeoftrafficsafetyresearch.
Itisimportanttoacknowledgethedisparitybetweentheresearchconductedinthetransportationdomainandtheresearchpursuedbycomputerscientists.Thetraditionaldomainapproachesprimarilyfocusedonanalyzingthecontributoryfactorsleadingtocrashes,whereascomputerscienceresearcherswereinclinedtowardsdesigningmoreeffectivemodelsforriskpredictionandsafetyplanning.Inthesubsequentsections,we
5of30
Designs2023,7,100
adheretothislogicaldistinctionbyfirstdelvingintotheanalysisofthecontributoryfactorsandsubsequentlyintroducingvariouscontrolmethods.
Table2.Keywordsummarybydifferentperspectives.
InvestigatedLocations
?FreewaySegments
?HorizontalCurvature
?Expressways
?Intersection
?RoadwaySegments
?UrbanArterials
?TypeAWeavingSegments
?RingRoads
ConsideredEntities
?ConnectedVehicles
?AutonomousVehicles
?Cycling
?Motorists
?Pedestrians
Techniques
?BayesianNetwork
?DeepReinforcementLearning
?ReinforcementLearningTree
?InverseReinforcementLearning
?ComputerVision
?MatchedCaseControl
?PropensityScore
?SHapleyAdditiveExPlanation
?GradientBoosting
?LSTM-CNN
?TransferLearning
?AttentionNetwork
?SupportVectorMachines
?StackedAutoencoder
?GatedRecurrentUnit
?MonteCarloTreeSearch
?ImitationLearning
Data
?
?
?
NaturalisticDrivingData
SimulatedData
DrivingSimulatorPlatform
??
SHRP2NDSData
Event-basedData
3.1.OngoingFundedResearchProjects
Inadditiontothemajorscientificconferencesandjounals,wealsoinvestigateactivefundedresearchprojectsonsafetyincludingNCHRP,FHWA,andNHTSA,aimingtosummarizethelatesttrendinpractice.
NCHRPRsearchProjects.AU.S.researchprogramaddressingtransportationchal-lenges,administeredbyTRBundertheNationalAcademies,NCHRPfundsprojectsonvarioustopics,includinghighwaysafety,involvingexpertsfromacademia,industry,andgovernmenttoenhancetransportationsafety.NCHRPprojectsaimtoenhancetrafficsafetyanddevelopstrategiesforpedestrians,bicyclists,androadinfrastructure.Theycoverareassuchastrafficsafetyculture,pedestriansafety,highway–railgradecrossings,ruralhighways,alternativeintersections,motoristbehavior,andleveragingAIandbigdata.Theresearchfocusesonimprovingsafety,reducingcrashes,andprovidingdecision-makingtoolsfortransportationdepartments.Specifically,NCHRP17-96aimstodevelopapriori-tizedresearchroadmapforTrafficSafetyCulture(TSC)toimprovetrafficsafetybychangingvaluesandattitudesandstrategicallyapplyingTSCstrategiesincollaborationwiththe4Es.NCHRP17-97investigatesthecausesofnighttimepedestriancrashes,evaluatestheexistingandemergingstrategiesforimprovingpedestriannighttimesafety,proposeseffec-tivemitigationstrategies,anddevelopsguidancefortheirimplementation.NCHRP17-99developsaframeworkandtoolsforassessingthesafetyeffectivenessoftreatmentsandtechnologiesathighway–railgradecrossings,aidingdecisionmakingtoreduceincidentsandimprovesafety.NCHRP17-92developsapredictivemethodologyforestimatingthecrashfrequencyandseverityonruraltwo-lanetwo-wayhighways,incorporatingspeedmeasures.NCHRP17-109developsCrashModificationFactors(CMFs)forAutomatedTrafficSignalPerformanceMeasures(ATSPM)signaltiming,quantifyingsafetybenefitsandcrashreductionsforallmodesandconflicttypes.NCHRP17-108developsquantitativecrashpredictionmethodologies,includingSafetyPerformanceFunctions(SPFs)andCrash
6of30
Designs2023,7,100
ModificationFactors(CMFs),foralternativeintersectiondesigns(DLT,MUT,andRCUT)toquantifytheirsafetybenefits.NCHRP17-106quantifiestheeffectsofcenterlineandshoulderrumblestripsonbicyclists’safetyandworkstounderstandmotorists’behavior,informingdesignpoliciesanddevelopingaguideforrumblestripapplications.NCHRP17-100leveragesAI,machinelearning,andbigdatatoprovidedata-drivenanalysistoolsandprioritizeinvestmentsforsaferroads,focusingonpedestrians,cyclists,andnew-mobilityusers.
FHWAResearchProjects.TheFHWAisaU.S.governmentagencythatmanagesandimprovesthecountry’shighwaystomakesuretheyaresafe,efficient,andaccessible.Theyworkonprojectsrelatedtoroadinfrastructure,trafficmanagement,andtransporta-tionplanning,playingacrucialroleinmaintainingandenhancingthetransportationnetworkforpeopleandgoods.FHWA-PROJ-19-0014aimstodevelopanArtificialRealisticData(ARD)generatorforevaluatingsafetyanalysismethods.FHWA-PROJ-20-0030linksdatabasestodevelopspeed-relatedCrashModificationFactors(CMFs)forsafetyanalysis.FHWA-PROJ-21-0069usesAImodelstopredicttrafficconditionsandmanagehighwaysproactively.FHWA-PROJ-20-0054createsasafetyassessmenttoolforinterchangedesigns.FHWA-PROJ-19-0089focusesonhumanfactorsinautomatedvehicles.FHWA-PROJ-19-0085evaluatesintersectiondesignsforpedestrianandbicyclistsafety.FHWA-PROJ-19-0026collectsdataandevaluatessafetyimprovementsformini-roundabouts,wrong-waydriving,andbicycleintersections.FHWA-PROJ-20-0002studiesthesafetyofpedestriancrossingsignswithLEDs.
NHTSAResearchProjects.TheNHTSA,aU.S.federalagencyundertheDepartmentofTransportation,activelypromoteshighwaysafety,setsvehiclestandards,andreducestrafficinjuries.ItfacilitatestheESVconference,aplatformforsharingresearchandinitiativesonvehiclesafety,withpaperspublishedintheTrafficInjuryPreventionJournal.Afterreviewingtherecentpublications,wesummarizedthefollowingstudies:
Astudy[
20
]investigatedtheimpactofsexonfatalityratesincarcrashes,findingthatnewervehiclesandadvancedsafetyfeatureshavereducedfatalityrisksforfemaleoccupantscomparedtomales.Anotherstudy[
21
]evaluatedoccupantmodelswithactivemusclesandshowedtheirabilitytoaccuratelypredictoccupantresponsesincrashsimu-lations.Aninvestigation[
22
]focusedonelderlyindividualsinnear-sideimpactcrashesrevealedtheneedforfurtheranalysisinestablishinginjurythresholds.Astudy[
23
]ondrowsy-drivingdetectionmodelsincorporatedmultipledatasourcesandachievedgoodaccuracyinpredictingdrowsiness.Astudy[
24
]evaluatedthecrashreductionsachievedincarsequippedwithautomaticemergencybraking(AEB)systemswithpedestrianandbicyclistdetection.Theanalysisshowedanoverallreductioninthecrashrisk,withAEBsystemsreducingthepedestriancrashriskby18%andthebicyclistcrashriskby23%duringdaylightandtwilightconditions.However,nosignificantreductionswereobservedindarkness.Anothermethod[
25
]wasdevelopedtoaccuratelyandefficientlysimulatevehiclecollisions,providingcollisionseverityparametersforinjurymitigationassessment.Regulationsarebeingdevelopedforthesafeintroductionofautomateddrivingsystems,andadata-drivenscenario-basedassessmentmethodwasproposed[
26
]toestimatetheirsafetyrisk.
Throughourinvestigation,weobservedatrendtowardsutilizingadvancedtechnolo-gies,suchasactivemuscles,AEBsystems,anddata-drivenmodels,toenhancesafetyinvariousaspectsofcarcrashes.Sex-specificanalysisandunderstandingtheimpactofsexonfatalityrateshavegainedattention.Accurateprediction,detection,andassessmentofrisksarecrucialforenhancingsafetymeasures.Ongoingeffortsfocusondevelopingtechnologiesandmethodsforsimulatingandassessingcollisionseverity,aimingtoenhanceinjurymitigationcapabilities.
7of30
Designs2023,7,100
3.2.GeographicalDistributionoftheStudyArea
Weexaminedtheresearchlocationshighlightedintherecentliterature,specificallythesiteswheretheirexperimentswereconducted,asdepictedinFigure
3
.Ouranalysisre-vealedthatFlorida,USA,andShanghai,China,emergedastwocommonlychosenlocations.
US
China
Canada
Korea Japan Indian Europe Netherland Brazil
Figure3.Spatialdistributionofstudyregion:Variedcolorsdepictdiversecountries,andgreatercirclesizesignifiesmoreextensiveresearchinthatlocation.
4.Analysis
Theanalysisofsafetyintrafficmanagementsystemsinvolvesevaluatingandassessingthesafetyaspectsofvariouscomponentsandprocesseswithinatransportationsystem.Itaimstoidentifythepotentialhazards,assesstherisks,andimplementmeasurestomitigatethoserisks,ultimatelyensuringthesafetyofroadusersandminimizingtheoccurrenceofaccidents.Inadditiontoriskanalysis,researchersalsostrivetoanalyzeinjurieswiththegoalofminimizingtheiroccurrenceandseveritytothelowestpossiblelevel.Theanalysisofsafetyintrafficmanagementsystemsisamultidisciplinaryfieldthatcombinesexpertisefromtransportationengineering,dataanalysis,humanfactors,andpolicymakingtoensuresaferroadenvironmentsandreducethelikelihoodandseverityofaccidentsandinjuries.
4.1.Method
Wesummarizethemethodsusedfortheanalysisoftrafficsafety.
Matched-pairAnalysis.Matched-pairanalysis,alsoknownaspairedanalysisorpairedcomparison,isastatisticalmethodusedtocomparetworelatedsetsofdataorobservations.Itisparticularlyusefulwhenstudyingsituationswhereitisdifficulttoestablishadirectcause-and-effectrelationshipbetweenvariablesorwhendealingwithdatathatexhibitahighdegreeofvariability.Inmatched-pairanalysis,eachobservationinonegrouporconditionispairedormatchedwithacorrespondingobservationintheothergrouporcondition.Thepairingisconductedbasedonsimilaritiesorrelevantcharacteristicsbetweentheobservations,suchasage,sex,orsomeotherrelevantfactor.Thepairingensuresthateachpairofobservationsisassimilaraspossible,exceptforthevariablebeinginvestigated.Bypairingobservations,ithelpstocontrolforindividualdifferencesorconfoundingvariablesthatcouldaffecttheoutcomebeingmeasured.Thisanalysismethodincreasestheprecisionandreducesthepotentialbiasesassociatedwithunpairedcomparisons.Matched-pairanalysiswasappliedin[
6
]toanalyzetherelativecrashriskduringvarioustypesofprecipitation(rain,snow,sleet,andfreezingrain).
MutualInformationTheory.Mutualinformationtheoryisaconceptininformationtheorythatmeasurestheamountofinformationthatissharedortransmittedbetweentworandomvariables.Itquantifiesthedegreeofdependenceorassociationbetweenthevariablesandprovidesameasureofthereductioninuncertaintyaboutonevariablegivenknowledgeoftheothervariable.Entropyisafundamentalconceptininformationtheorythatcharacterizestheuncertaintyorrandomnessofarandomvariable.Itmeasurestheaverageamountofinformationneededtospecifytheoutcomeofarandomvariable.Higher
8of30
Designs2023,7,100
entropyindicateshigheruncertainty.Inaddition,mutualinformationmeasurestheamountofinformationthattworandomvariablesshare.Itquantifiesthereductioninuncertaintyaboutonevariablebyknowingthevalueoftheothervariable.Mathematically,itisthedifferencebetweentheentropyoftheindividualvariablesandthejointentropyofthetwovariables.Ifthemutualinformationishigh,itindicatesastrongrelationshipbetweenthevariables,suggestingthatknowledgeofonevariableprovidessubstantialinformationabouttheothervariable.Overall,mutualinformationtheoryhasproventobeavaluabletoolinvariousdisciplinesthatdealwithdataanalysisandinformationprocessing.Usingmutualinformationtheory,onestudy[
27
]quantifiedtheinteractionsbetweenvariousriskfactors,consideringmultifactorscenarios.
MatchedCaseControl.Thematchedcase-controlapproachcanbeappliedtoanalyzecrashoccurrencesduringspecialscenariossuchasevacuations[
7
,
28
].Thisapproachallowsforathoroughinvestigationofthepotentialriskfactorsorexposuresthatcontributetocrashesinaspecialscenariowhilecontrollingfortheconfoundingvariables.Forexample,theauthorsin[
7
],discussedastudyfocusedonunderstandingthefacto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冀少版八年級(jí)生物上冊(cè)第四單元第二節(jié)運(yùn)動(dòng)的完成課件
- 第七章燃料及其利用-教案
- 語文S版三年級(jí)下冊(cè)全冊(cè)教案
- 建筑行業(yè)勞務(wù)管理規(guī)范
- A版五年級(jí)語文下冊(cè)教案(全冊(cè))
- 家具采購(gòu)最低價(jià)評(píng)審流程
- 交通運(yùn)輸合同施工承諾書
- 醫(yī)院建設(shè)項(xiàng)目合同協(xié)議書范本
- 園林工程簡(jiǎn)易施工合同
- 石油化工委托加工環(huán)保要求
- 15D501 建筑物防雷設(shè)施安裝
- CJJ1-2008城鎮(zhèn)道路工程施工與質(zhì)量驗(yàn)收規(guī)范
- 重大危險(xiǎn)源理論知識(shí)考試試題及答案
- 【公開課】銀飾之美
- GB/T 41632-2022絕緣液體電氣用未使用過的合成有機(jī)酯
- YS/T 921-2013冰銅
- FZ/T 50040-2018化學(xué)纖維短纖維親水性能試驗(yàn)方法
- PCB 生產(chǎn)工藝及其基本知識(shí)
- 新人教版五年級(jí)上冊(cè)數(shù)學(xué)廣角-《植樹問題》
- ICH-Q7活性藥物成分(API)的GMP指南課件
- 丁醇安全技術(shù)說明書
評(píng)論
0/150
提交評(píng)論