高三數(shù)學知識點整理分享_第1頁
高三數(shù)學知識點整理分享_第2頁
高三數(shù)學知識點整理分享_第3頁
高三數(shù)學知識點整理分享_第4頁
高三數(shù)學知識點整理分享_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Word第第頁高三數(shù)學知識點整理分享高三數(shù)學學問點整理共享1

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數(shù)的大小

兩個實數(shù)的大小是用實數(shù)的運算性質來定義的,

有a-b>0?;a-b=0?;a-b0,則有>1?;=1?;b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

復習指導

1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最終利用不等式的性質求出目標式的范圍.

3.“兩條常用性質”

(1)倒數(shù)性質:①a>b,ab>0?0,0;④0

(2)若a>b>0,m>0,則

①真分數(shù)的性質:0);

高三數(shù)學學問點整理共享2

①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形。

⑶特別棱錐的頂點在底面的射影位置:

①棱錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心。

②棱錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。

③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心。

④棱錐的頂點究竟面各邊距離相等,則頂點在底面上的射影為底面多邊形內心。

⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心。

⑥三棱錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。

⑦每個四周體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

⑧每個四周體都有內切球,球心

是四周體各個二面角的平分面的交點,到各面的距離等于半徑。

[注]:i。各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個側面的等腰三角形不知是否全等)

ii。若一個三角錐,兩條對角線相互垂直,則第三對角線必定垂直。

簡證:AB⊥CD,AC⊥BD

BC⊥AD。令得,已知則。

iii??臻g四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形肯定是矩形。

iv。若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是肯定是正方形。

簡證:取AC中點,則平面90°易知EFGH為平行四邊形

EFGH為長方形。若對角線等,則為正方形。

高三數(shù)學學問點整理共享3

1.等差數(shù)列的定義

假如一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

2.等差數(shù)列的通項公式

若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

3.等差中項

假如A=(a+b)/2,那么A叫做a與b的`等差中項.

4.等差數(shù)列的常用性質

(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_.

(2)若{an}為等差數(shù)列,且m+n=p+q,

則am+an=ap+aq(m,n,p,q∈N_.

(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_是公差為md的等差數(shù)列.

(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

(5)S2n-1=(2n-1)an.

(6)若n為偶數(shù),則S偶-S奇=nd/2;

若n為奇數(shù),則S奇-S偶=a中(中間項).

留意:

一個推導

利用倒序相加法推導等差數(shù)列的前n項和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

兩個技巧

已知三個或四個數(shù)組成等差數(shù)列的一類問題,要擅長設元.

(1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再根據(jù)等差數(shù)列的定義進行對稱設元.

四種方法

等差數(shù)列的推斷方法

(1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_都成立;

(3)通項公式法:驗證an=pn+q;

(4)前n項和公式法:驗證Sn=An2+Bn.

注:后兩種方法只能用來推斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

高三數(shù)學學問點整理共享4

定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當a為不同的數(shù)值時,冪函數(shù)的定義域的不憐憫況如下:假如a為任意實數(shù),則函數(shù)的定義域為大于0的全部實數(shù);假如a為負數(shù),則x確定不能為0,不過這時函數(shù)的定義域還必需根[據(jù)q的奇偶性來確定,即假如同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的全部實數(shù);假如同時q為奇數(shù),則函數(shù)的定義域為不等于0的全部實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不憐憫況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域。

性質:

對于a的取值為非零有理數(shù),有必要分成幾種狀況來商量各自的特性:

首先我們知道假如a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),假如q是奇數(shù),函數(shù)的定義域是R,假如q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),明顯x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

排解了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排解了為0這種可能,即對于x

排解了為負數(shù)這種可能,即對于x為大于且等于0的全部實數(shù),a就不能是負數(shù)。

高三數(shù)學學問點整理共享5

1.滿意二元一次不等式(組)的x和y的取值構成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,全部這樣的有序數(shù)對(x,y)構成的集合稱為二元一次不等式(組)的解集。

2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。

3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C0所表示的平面區(qū)域時,應把邊界畫成虛線。

8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。

9.從實際問題中抽象出二元一次不等式(組)的步驟是:

(1)依據(jù)題意,設出變量;

(2)分析問題中的變量,并依據(jù)各個不等關系列出常量與變量x,y之間的不等式;

(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。

高三數(shù)學學問點整理共享6

第一章:三角函數(shù)??荚嚤乜碱}。誘導公式和基本三角函數(shù)圖像的一些性質只要記住會畫圖就行,難度在于三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相,及依據(jù)最值計算A、B的值和周期,及恒等改變時圖像及性質的改變,這一學問點內容較多,需要多花時間,首先要記憶,其次要多做題強化練習,只要能踏踏實實去做,也不難把握,究竟不存在理解上的難度。

其次章:平面對量。個人覺得這一章難度較大,這也是我把握最差的一章。向量的運算性質及三角形法則平行四邊形法則難度都不大,只要在計算的時候記住要同起點的向量。向量共線和垂直的數(shù)學表達,這是計算當中常常要用的公式。向量的共線定理、基本定理、數(shù)量積公式。難點在于分點坐標公式,首先要精確記憶。向量在考試過程一般不會單獨消失,經(jīng)常是作為解題要用的工具消失,用向量時要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論