版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
附錄B引用外文文獻及其譯文COMcomponenttechnologybasedbatchgrayimagesmosaicmethodAbstractInthispaper,wepresentagrayimagemosaiccomponentdesignmethodbasedonthevectorrotatingrelaxmatchingalgorithm,whichcanhandlebatchimagesfastandwithhighquality.Wecomputethecoordinatetransformationmatrixforfull-sceneimagesplicingbyusingtheimagematchingalgorithm.Thealgorithm’smatrixoperationimplementationisbasedontheCOMcomponenttechnologytoolboxinMatlab7.0.WeapplybothfuzzyhumanvisualrestrictionconditionsforsplicingimagesandthemultithreadtechnologyintheVCdevelopmentenvironmenttoimprovethematchingalgorithmperformanceefficiency.Theexperimentpartdemonstratestheexecutionefficiencyoftheproposedmethod,whichshowsthatitcanmeetthereal-timedemandofthebatchgrayimagemosaicsoftwaresystem.Keywords:imagemosaic;imageregistration;relaxationmatching.1.IntroductionFullsceneimagesoftwarebasedonimagesplicingattractsgreatattentionrecently,suchasArcSoftPanoramaMaker,Photoshop8.0etc.Thissoftwareareoftenusedtoprocessimagecapturedbythecommercialcameraorpersonalcamera,whichhashighimagequality.However,thatsoftwareisnotsuitableforthecamerawhichisoftenusedinhighspeedmode,complexandharshshootingconditions,suchasindustrialcameras.Theimagequalityandimagefidelitycapturedbyindustrialcamerasarenotasgoodasthosecapturedbythepersonalcameraorcommercialcamera,whichmoreorlesshavedifferentdegreesofimagedistortionandreducetheaccuracyandstabilityoftheautomaticimagemosaicalgorithm(Liu,2007).Becausethemaindifficultyofimagesplicingliesonimageregistration,researchersputgreatattentiononimageregistrationtechnologyinthepastdecades,andhaveachievedsignificantresearchresults(Kanazawa&Kanatani,2004;Miranda-Luna,Daul,Blondel,Hernandez-Mier,WolfandGuillemin,2008;Zitová&Flusser,2003).Toimprovetheimageregistrationaccuracy,alargesumofmatrixoperationsareperformedontheimages,whichishighcomputationcost,andreducestheefficiencyoftheimagesplicingsoftware.ThiscannotHence,thesealgorithmscannotextendtotherealisticapplications.Imageregistrationalgorithmbasedonvectorrotatingrelaxhasbeenproventobeapreciseandrobustimagematchingalgorithm(Wang,Hou,Cong,andSun,2010).However,inordertopursuetheabovetwocharacteristics,thiskindalgorithmalsoinvolvemanymatrixoperations,andtheexecutionefficiencyisnothigh.Toovercomethisbottleneck,inthispaper,weproposedamethodthatusesmultithreadtechnologytooptimizetheimageregistrationmatrix,andtoexecuteconcurrently,whichcanmeetthereal-timedemandingoftheimageregistrationsystem.2.RelatedTheories2.1.RelaxmatchingalgorithmbasedonthevectorrotatingWang,Hou,Cong,andSun(2010)proposedtherelaxmatchingalgorithmbasedonthevectorrotating,andthemainideaisasfollows:First,evaluatethetwopairsofinitialmatchingcornerpointsextractedfromtwoimages;Second,involveanotherpairofcornerpoints,andifthevectorrotationanglesofthethispaircornersandthatoftheinitialpairsofcornersareverysimilar,supportdegreeofthispaircornerpointsandthetwoinitialpairsofcornerpointsishigh.Ifthesumthesupportdegreeofpairsofcornerpoints,whichareconstitutedbyonecornerpointwithallotherpoints,thiscornerpointiswrong,andwecandeleteit.Werepeatthisprocessuntilallselectedcornerpointsmeettheaboveconditions.2.2.FuzzyhumanvisualrestrictionconditionsWecanextractthreemainvisualrestrictionconditionsfortheimagestobespliced,fromthevectorrotatingrelaxmatchingalgorithm.1.Proportionalbandoftheoverlappartsbetweenimages2.Thesimilarityofthegreylevelorthethresholdbetweentheimages.3.Subjectivevisualimagedistortiondegreeoftheimages.Becauseofthedifferencesbetweentheimagesintherealworld,theabovethreeconditionsintherealimageprocessprojectcannotbeconsistentexactly,althoughwecangetapproximatevaluesbasedonanalysisofplentyofimagedata.However,thisstrategywillreducetheexecutionefficiencyofthesystem,whichisnotsuitablefortherealworldapplications.Onthisotherhand,inmanyindustrialconditions,thereissomecertainpatternfortheimagesequencesselected.Forthiskindofimagesequences,theabovethreeconditionareusuallyapplicable.2.3.SoftwaredesignationforthefastimageregistrationTheimageregistrationalgorithminSec.2.1containsthreemainsteps:Firstly,extractHarriscornerpointmatrixforthetwoimagestobespliced;secondly,initialcircularprojectionmatching;thirdly,relaxoptimizationmatching.Thecomputingprocessofthethreestepsiscorrespondingtotheabovethreeconditions.Hence,wecanimprovetheexecutionefficiencyofthealgorithmandtherobustnessofthesystembyreasonablyusingthesefuzzyvisualrestrictionconditions.TheflowchartoftheimageregistrationalgorithmproposedinSec.2.1isshowninFig.1(a).WecanseefromFig.1(a)that,thereisnorelevancebetweenStep1andStep2,andeveryindividualextractionisbasedonthewholeimage.Thiswillproduceplentyofuselesscornerpoints,whichareawasteoftimeandwillcauseinterferencefortheinitialmatching.ForthecornerpointmatrixesselectedfromStep3andStep5,thereisrelevance,butthereisnorelevanceforthecornerpointswithinthematrix.Hence,thecomputationofgreysimilarityofthecornerpointsandthatofthesupportdegreesummationoftheoptimizationselectionalgorithmcanbeexecutedconcurrently.Fig.1(a)Flowchartoftheimageregistrationalgorithm;(b)SoftwareimplementationoftheimageregistrationalgorithmTheflowchartofthesoftwarefortheimageregistrationproposedinSec.2.1isshowninFig.1(b).Fig.1(b)showsthat,thecomputationtimeofStep1andStep2canbeoverlap,andthecornerpointssearchingfromtheun-overlapareacanbeavoidedbasedontherestrictioncondition1,whichcanimprovetheefficiencyofthefeaturepointssearchingalgorithm,andtheaccuracyoftheinitialmatching.Step3dividesthecornerpointmatrixgotfromStep1basedoncolumnsofthematrix.Inthispaper,wedivideitinto4blocksbasedontheheightofthesimulationimage(1280×1024).Allthecornerpointmatrixblockscomputethegreysimilarityconcurrently,andselecttheinitialcornerpointmatchingpairsbasedontherestrictioncondition2.Step6clonestheinitialmatchingpairpositioncoordinatesetofthefirstimagetobesplicedgotfromStep5setinto4,andeachsetwillberelaxmatchingoptimizationselectedbasedonthefollowingstrategy.Lettheelementsofthesetben,andtheelementsofthesetx(x=1,2,3),theinitialmatchingpairspositioncoordinatesofwhichneedtobeselectedbasedrelaxmatchingoptimizationalgorithm,belongtotheregion:(x-1)×[n/4]-[n/4]×x,andthatoftheset4belongsto3×[n/4]-n.Throughthisway,eachsetjustneedstokeeponebestcornerpointsmatchingpair,andalso,inthenextimagesplicingstep,thecornerpointmatchingpairsofSVDcoordinatetransformationcancoverthewholeimageintheimagespace.Inaddition,thismethodcanguaranteethecoordinatetransformationofimagesplicingmatrixtobeaccurate.Basedontherestrictioncondition3,userscansettheimagedistortiontolerancedegreevaluesthemselvesthroughfuzzyvisualfeelings,whichcanimprovetherobustnessofthesystemsignificantly.3.SimulationResultsInthispaper,thepairofimagestospliceisrandomlyselectedfromtheHeilongjiangFig.2(a)Concretepavementforreference;(b)ConcretepavementtoberegisteredFromtable1wecanseethat,undertheaboveexperimentalsettings,theproposedalgorithmcanfinishtheimageregistrationinaboutanaverage20s,whichisacceptableforthecustomers.AnotherconvincingpointisthatthemultithreadtechnologycanmakefulluseoftheCUPresource.AsthemulticoreCUPisonadailybroadeningscale,multithreadtechnologywhichexecutesdataoperationconcurrentlywillbethetrend.TheexecutionefficiencyoftheimagesplicingalgorithmbasedonmultithreadtechnologywillcontinuetoimproveasthecontinuousupgradeofCUPtechnology.4.ConclusionInthispaper,weproposedaCOMcomponentdesignmethodforamultithreadbasedimagesplicingalgorithm.Thismethodincreasesthestabilityofthesplicingsystembyinvolvingfuzzyvisualrestrictionconditionsand,insomedegrees,optimizesthealgorithmstructureandincreasestheexecutionefficiencyofthealgorithm.Theproposedmethodisvaluabletopromoteforrealindustrialfull-sceneimagesplicing.基于批處理灰度圖像的拼接方法COM組件技術(shù)摘要在本文中,我們提出了一種以矢量旋轉(zhuǎn)的松弛匹配算法為根據(jù)的灰度圖像拼接構(gòu)件設(shè)計方法,可以快速地、高效地處理批處理圖像。我們利用圖像匹配算法來計算全景圖像拼接的坐標變換矩陣。該算法的矩陣運算的實現(xiàn)是基于Matlab7當(dāng)中的COM組件技術(shù)工具箱。我們應(yīng)用模糊的視覺限制條件進行拼接圖像,在VC開發(fā)環(huán)境下利用多線程技術(shù)提高匹配算法的效率。實驗完全證實了所提出方法的執(zhí)行效率,表明它能滿足批量的灰度圖像拼接軟件系統(tǒng)實時性的要求。關(guān)鍵詞:圖像拼接;圖像配準;松弛匹配。1.引言近年來,基于圖像拼接的全景圖像軟件受到了極大的關(guān)注,如虹軟全景圖像拼接大師、PS圖像處理軟件8.0等。這些軟件經(jīng)常被用來處理具有高質(zhì)量的商業(yè)相機或個人相機拍攝的圖像。然而,這些軟件并不適合經(jīng)常用于高速模式、復(fù)雜和惡劣的拍攝條件的相機,如工業(yè)相機。由工業(yè)攝像機拍攝的圖像質(zhì)量和圖像保真度沒有那些由個人或商業(yè)相機拍攝的那樣好,這或多或少會降低圖像自動拼接的準確性和穩(wěn)定性。由于圖像拼接的主要困難是圖像配準,因此在過去的幾十年,研究者特別重視圖像配準技術(shù),并取得了顯著的研究成果。為了提高圖像配準的精度,大量的矩陣運算應(yīng)用于圖像,這需要很高的計算成本,降低了圖像拼接軟件的效率。還不僅如此,這些算法不能擴展到現(xiàn)實中?;谑噶啃D(zhuǎn)的松弛的圖像配準算法已被證明是準確和魯棒性的圖像匹配算法。然而,為了追求上述兩個特點,這種算法還涉及到很多的矩陣運算,且執(zhí)行效率不高。為了克服這一瓶頸,在本文中,我們提出了一種利用多線程技術(shù)來優(yōu)化圖像配準矩陣的方法,可以滿足圖像配準系統(tǒng)的實時性的要求。2.相關(guān)理論2.1基于矢量旋轉(zhuǎn)的松弛匹配算法Wang,Hou,CongandSun提出了基于矢量旋轉(zhuǎn)的松弛匹配算法,其主要思想是:首先,評價兩組從兩幅圖像中提取的初始角點;第二,如果這兩組角點的向量旋轉(zhuǎn)角度非常相似,那么這兩組角點的相似度就很高。如果這對角點和其他角點都相似,那這個點就是錯誤的,我們可以刪除它。我們重復(fù)這個過程,知道所選定的角點都滿足上述條件。2.2模糊的視覺限制條件我們可以從矢量旋轉(zhuǎn)松弛匹配算法中為待拼接圖像提取三個主要視覺限制條件。圖像之間的重疊部分的比例帶。圖像之間的閥值和灰度級的相似度。圖像的主觀視覺圖像的失真度。雖然我們可以通過大量的圖像數(shù)據(jù)的分析獲得近似值,但因在現(xiàn)實世界圖像之間的差異,在實際的圖像處理中,上面三個條件不能夠準確一致。然而,這種策略會降低系統(tǒng)的執(zhí)行效率,這是不適合在現(xiàn)實世界中應(yīng)用的。在另一方面,在許多工業(yè)的情況下,可以選擇一些特定模式的圖像序列。這類圖像序列,以上三個條件通常是適用的。2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧圖書館整體解決方案
- 卡姿蘭活動策劃方案
- 音樂教育中的教學(xué)方法創(chuàng)新
- 腫瘤治療藥臨床使用管理
- 沉與浮教案反思
- 氧化碳制取的說課稿
- 市政工程招投標授權(quán)委托書
- 橡膠制品損壞賠償指南
- 建筑工程改造系統(tǒng)施工合同范本
- 環(huán)保建設(shè)幼兒園施工合同
- 小學(xué)書法認識隸書課件
- 江蘇省南京市上元中學(xué)2023年中考英語模擬預(yù)測試卷(含答案解析)
- 《組織行為學(xué)》美斯蒂芬·P·羅賓斯著版課件
- XX項目不動產(chǎn)權(quán)籍調(diào)查技術(shù)設(shè)計書
- 煙草行業(yè)安全風(fēng)險分級管控和事故隱患排查治理雙重預(yù)防機制課件
- 小學(xué)語文人教六年級上冊“走近魯迅”群文閱讀課件
- 慢性病高風(fēng)險人群健康管理(課件)
- 工程項目總承包(EPC)管理手冊范本
- 公共機構(gòu)節(jié)能培訓(xùn)課件
- 六年級上冊數(shù)學(xué)課件-《比的化簡》 (共14張PPT)北師大版(2014秋)
- 醫(yī)院崗位風(fēng)險分級、監(jiān)管制度
評論
0/150
提交評論