桑樹坪煤礦12 Mta新井設(shè)計(jì)_第1頁
桑樹坪煤礦12 Mta新井設(shè)計(jì)_第2頁
桑樹坪煤礦12 Mta新井設(shè)計(jì)_第3頁
桑樹坪煤礦12 Mta新井設(shè)計(jì)_第4頁
桑樹坪煤礦12 Mta新井設(shè)計(jì)_第5頁
已閱讀5頁,還剩128頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

本科生畢業(yè)設(shè)計(jì)(論文)桑樹坪煤礦桑樹坪煤礦1.2Mt/a新井設(shè)計(jì)煤與瓦斯共采技術(shù)現(xiàn)狀及綜述題目:姓名:學(xué)號(hào):班級(jí):中國(guó)礦業(yè)大學(xué)本科生畢業(yè)設(shè)計(jì)姓名:學(xué)號(hào):學(xué)院:礦業(yè)工程學(xué)院專業(yè):采礦工程專業(yè)設(shè)計(jì)題目:桑樹坪煤礦1.2Mt/a新井設(shè)計(jì)專題:指導(dǎo)教師:職稱:教授中國(guó)礦業(yè)大學(xué)畢業(yè)設(shè)計(jì)任務(wù)書學(xué)院礦業(yè)工程學(xué)院專業(yè)年級(jí)采礦工程專業(yè)2007級(jí)學(xué)生姓名徐躍任務(wù)下達(dá)日期:年月日畢業(yè)設(shè)計(jì)日期:年月日至年月日畢業(yè)設(shè)計(jì)題目:桑樹坪煤礦1.2Mt/a新井設(shè)計(jì)畢業(yè)設(shè)計(jì)專題題目:煤與瓦斯共采技術(shù)現(xiàn)狀及綜述畢業(yè)設(shè)計(jì)主要內(nèi)容和要求:院長(zhǎng)簽字:指導(dǎo)教師簽字:

中國(guó)礦業(yè)大學(xué)畢業(yè)設(shè)計(jì)指導(dǎo)教師評(píng)閱書指導(dǎo)教師評(píng)語(①基礎(chǔ)理論及基本技能的掌握;②獨(dú)立解決實(shí)際問題的能力;③研究?jī)?nèi)容的理論依據(jù)和技術(shù)方法;④取得的主要成果及創(chuàng)新點(diǎn);⑤工作態(tài)度及工作量;⑥總體評(píng)價(jià)及建議成績(jī);⑦存在問題;⑧是否同意答辯等):成績(jī):指導(dǎo)教師簽字:年月日

中國(guó)礦業(yè)大學(xué)畢業(yè)設(shè)計(jì)評(píng)閱教師評(píng)閱書評(píng)閱教師評(píng)語(①選題的意義;②基礎(chǔ)理論及基本技能的掌握;③綜合運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力;③工作量的大小;④取得的主要成果及創(chuàng)新點(diǎn);⑤寫作的規(guī)范程度;⑥總體評(píng)價(jià)及建議成績(jī);⑦存在問題;⑧是否同意答辯等):成績(jī):評(píng)閱教師簽字:年月日

中國(guó)礦業(yè)大學(xué)畢業(yè)設(shè)計(jì)答辯及綜合成績(jī)答辯情況提出問題回答問題答辯委員會(huì)評(píng)語及建議成績(jī):答辯委員會(huì)主任簽字:年月日學(xué)院領(lǐng)導(dǎo)小組綜合評(píng)定成績(jī):學(xué)院領(lǐng)導(dǎo)小組負(fù)責(zé)人:年月日摘要本設(shè)計(jì)包括三個(gè)部分:一般部分、專題部分和翻譯部分。一般部分為桑樹坪煤礦1.20Mt/a新井設(shè)計(jì)。桑樹坪煤礦位于陜西省韓城市境內(nèi),從下峪口至桑樹坪的鐵路運(yùn)煤專線與西候線接軌,交通便利。井田走向長(zhǎng)度約7.01km,傾向長(zhǎng)度約2.36km,面積約14.82km2。主采煤層為3號(hào)煤層,平均傾角為6°,平均厚度為6.3m。井田工業(yè)儲(chǔ)量為387.84Mt,可采儲(chǔ)量為273.52Mt,礦井服務(wù)年限為58a。礦井正常涌水量為532m3/h,最大涌水量為589.7m3/h。礦井相對(duì)瓦斯涌出量為17.1m3/t,屬于高瓦斯礦井。根據(jù)井田地質(zhì)條件,提出四個(gè)技術(shù)上可行的開拓方案。方案一:雙斜井中央并列式通風(fēng);方案二:雙立井石門風(fēng)井通風(fēng);方案三:雙斜井兩翼對(duì)角式通風(fēng);方案四:雙立井兩翼對(duì)角式通風(fēng)。通過技術(shù)經(jīng)濟(jì)比較,最終確定方案一為最優(yōu)方案。設(shè)計(jì)首采區(qū)采用帶區(qū)準(zhǔn)備方式,工作面長(zhǎng)度210m,采用大采高采煤法,沿空掘巷,礦井年工作日為300d,工作制度為“四六制”。大巷采用膠帶輸送機(jī)運(yùn)煤,輔助運(yùn)輸采用礦車運(yùn)輸。礦井通風(fēng)方式為中央并列式。專題部分題目:煤與瓦斯共采技術(shù)現(xiàn)狀綜述,煤與瓦斯共采技術(shù)實(shí)現(xiàn)工作面Y型通風(fēng),根本上解決了上隅角瓦斯積聚難題,利于實(shí)現(xiàn)高濃度瓦斯抽采,有效解決了工作面的瓦斯超限問題,成倍提高我國(guó)高瓦斯難抽放煤層工作面的單產(chǎn)水平。是綠色采礦的發(fā)展方向,在技術(shù)上和經(jīng)濟(jì)上具有很大的優(yōu)越性。翻譯部分題目:Analyticalmodelsforrockbolts.關(guān)鍵詞:桑樹坪煤礦;斜井;立井;帶區(qū)布置;大采高采煤法;中央并列式;沿空掘巷

ABSTRACTThisdesigncanbedividedintothreesections:generaldesign,monographicstudyandtranslationofanacademicpaper.Thegeneraldesignisabouta1.20Mt/anewundergroundminedesignofSangshupingcoalmine.SangshupingcoalmineliesinHanchengCity,Shanxiprovince.AsXiayukourailwayrunsinthewestoftheminefieldandXihourailwayrunsintheeastoftheminefield,thetrafficisconvenient.It’sabout7.01kmonthestrikeand2.36kmonthedip,withthe14.82km2totalhorizontalarea.Theminablecoalseamis3withanaveragethicknessof6.3mandanaveragedipof6°.Theprovedreservesofthiscoalmineare387.84Mtandtheminablereservesare273.52Mt,withaminelifeof58a.Thenormalmineinflowis532m3/handthemaximummineinflowis589.7m3/h.Theminegasemissionrateis17.1m3/t,whichbelongstohighgasmine.Minegeologicalconditionsundertheproposeddevelopmentschemesforthefourtechnicallyfeasible.OptionOne:Twoparallelinclinedcentralventilation;OptionII:Two-shaftventilationshaftventilationShihmen;OptionThree:Twowingsoftheangleofventilationshaft;programfour:twowingsoftheangleofventilationshaft.Throughtechnicalandeconomiccomparisonofafinalizedplanfortheoptimalsolution.Designoftheminingareapreparedbywayofbands,facelengthof210m,high-miningmethodusinglargeminingalonggoaf,workingasamineof300d,theworksystemas"forty-sixsystem."Roadwaybybeltconveyortotransportcoal,auxiliarytransportbytramcartransport.Mineventilationforthecentralparallel.Specialsectiontopic:coalandgasextractiontechnologystatusreview,coalandgasextractiontechnologyforfaceY-ventilation,afundamentalsolutiontotheproblemonthecornergasaccumulation,conducivetohighconcentrationsofgasextraction,aneffectivesolutiontothefaceGasgaugeproblems,doubledandredoubleddifficultdrainageofhighgasyieldscoalface.GreenminingdevelopmentinthetechnicalandeconomicadvantagesofgreatTranslationofpartofthesubject:theprocessofcirculartunnelinthereliefofthenumericalsimulationofrockburstoccurredKeywords:SangshupingCoal;shaft;shaft;bandarrangement;largeminingheightofcoalmining;centralparallel;alonggoaf第頁Analyticalmodelsforrockbolts.C.L*,StillborgAbstractThreeanalyticalmodelshavebeendevelopedforrockbolts:oneforboltssubjectedtoconcentratedpullloadinpullouttests,oneforboltsinstalledinuniformlydeformedrockmasses,andoneforboltssubjectedtotheopeningofindividualrockjoints.Thedevelopmentofthemodelshasbeenbasedonthedescriptionofthemechanicalcouplingattheinterfacebetweentheboltandthegroutmediumforgroutedbolts,orbetweentheboltandtherockforfrictionallycoupledbolts.Forrockboltsinthepullouttests,theshearstressoftheinterfacesexponentiallywithincreasingdistancefromthepointofloadingwhenthedeformationiscompatibleacrosstheinterface.Decouplingmaystartfirstattheloadingpointwhentheappliedloadislargeenoughandthenpropagatetowardsthefarendoftheboltwithafurtherincreaseintheappliedload.Themagnitudeoftheshearstressonthedecoupledboltsectiondependsonthecouplingmechanismattheinterface.Forfullygroutedbolts,theshearstressonthedecoupledsectionislowerthanthepeakshearstrengthoftheinterfacewhileforfullyfrictionallycoupledboltsifisapproximatelythesameasthepeakshearstrength.Forrockboltsinstalledinuniformlydeformedrock,theloadingprocessoftheboltsduetorockdeformationhasbeentakenintoaccountindevelopingthemodel.Modelsimulationsconfirmthepreviousfindingsthataboltinsituhasapick-uplength,ananchorlengthandneutralpoint.Itisalsorevealedthatthefaceplateplaysasignificantroleinenhancingthereinforcementeffect.Injointedrockmasses,severalaxialstresspeaksmayoccuralongtheboltbecauseoftheopeningofrockjointsintersectingthebolt.1.IntroductionRockboltshavebeenwidelyusedforrockreinforcementincivilandminingengineeringforalongtime.Boltsreinforcerockmassesthroughrestrainingthedeformationwithintherockmasses.Inordertoimproveboltingdesign,itisnecessary:tohaveagoodunderstandingofthebehaviourofrockboltsindeformedrockmasses.Thiscanbeacquiredthroughfieldmonitoring,laboratorytests,numericalmodelingandanalyticalstudies.Sincethe1970s,numerousresearchershavecarriedoutfieldmonitoringworkonrockboltsinstalledinvariousrockformations.FreemanperformedpioneeringworkinstudyingtheperformanceoffullygroutedrockboltsintheKielderexperimentalrunnel.Hemonitoredboththeloadingprocessoftheboltsandthedistributionofhismonitoringdata,heproposedtheconceptsof“neutralpoint”“pick-uplength”and“anchorlength”.Attheneutralpoint,theshearstressattheinterfacebetweentheboltandthegroutmediumiszero,whilethetensileaxialloadofthebolthasapeakvalue.Thepick-uplengthreferstothesectionoftheboltfromthenearendofthebolt(onthetunnelwall)totheneutralpoint.Theshearstressesonthissectionoftheboltpickuptheloadfromtherockanddragthebolttowardsthetunnel.Theanchorlengthreferstothesectionoftheboltfromtheneutralpointtothefarendofthebolt(itsseatingdeepintherock).Theshearstressesonthissectionoftheboltanchorthebolttotherock.Theseconceptsclearlyoutlinethebehaviouroffullygroutedrockboltsinadeformedrockformation.BjonfotandStephansson’sworkdemonstratedthatinjointedrockmassestheremayexistnotonlyonebutseveralneutralpointsalongtheboltbecauseoftheopeningdisplacementofindividualjoints.Pullouttestsareusuallyusedtoexaminetheanchoringcapacityofrockbolts.Agreatnumberofpullouttestshavebeenconductedsofarinvarioustypesofrocks.Farmercarriedoutfundamentalworkinstudyingthebehaviourofboltsundertensileloading.Hissolutionpredictsthattheaxialstressofthebolt(alsotheshearstressattheboltinterface)willdecreaseexponentiallyfromthepointofloadingtothefarendoftheboltbeforedecouplingoccurs.Fig.1(a)illustratestheresultsofatypicalpullouttest.Curvearepresentsthedistributionoftheaxialstressalongtheboltunderarelativelylowappliedload,atwhichthedeformationiscompatibleonbothsidesoftheboltinterface.Curvebrepresentstheaxialstressalongtheboltatarelativelyhighappliedload,atwhichdecouplinghasoccurredatpartoftheboltinterface.Fig.1(b)showstheaxialstressalongarockboltinstalledinanundergroundminedrift.Itisseenfromthisfigurethatthedistributionoftheaxialstressalongthesectionclosetotheboreholecollariscompletelydifferentfromthatinpullouttests.However,alongthesectiontothefarendofthebolt,thestressvariessimilarlytothatinpullouttests.ThereasonFig.1Distributioniftheaxialstress(a)alongagroutedsteelbarduringpullouttest,afterHawkesandEvan,and(b)alongagroutedrockboltinsituaftersunfortheseresultsisthatboltsinsituhaveapick-uplengthandananchorlength,whileboltsinpullouttestsonlyhaveananchorlength.Itisthoughtthattherelativemovementbetweentherockandtheboltiszeroattheneutralpoint.InthesolutionbyTaoandChen,thepositionoftheneutralpointdependsonlyontheradiusofthetunnelandthelengthofthebolt.ThatsolutionwasimplementedintheanalyticalmodelscreatedbyIndraratnaandKaiserandHyettet.al.ItseemsthatTaoandChen’ssolutionisvalidonlywhenthedeformationiscompatibleacrosstheboltinterface.Whendecouplingoccurs,thepositionoftheneutralpointisobviouslyalsorelatedtotheshearstrengthoftheinterface.Fieldmonitoringandpullouttestshaveindicatedtwofactsconcerningtheloadingofarockboltinsitu:(1)rockdeformationappliedaloadonthepick-upsectionofthebolt;(2)theloadonthepick-upsectiondragstheanchorsectionofthebolttowardstheundergroundopening.Thesetwofactsmustbetakenintoaccountindevelopinganalyticalmodelsforrockbolts.Theaimofthispaperistodevelopanalyticalmodelsforfullycoupledrockbolts.Amodelforrockboltsinpullouttestsisintroducedfirst,togetherwithadescriptionofthetheoreticalbackground,thedevelopmentofthemodelandanillustrativeexample.Twomodelsforrockboltsinsituarethenpresented,oneinrockmasses.Thedetailsofthedevelopmentofthemodelsaresummarizedintheappendices.2.CouplingbetweentheboltandtherockWindsorproposedtheconceptthatareinforcementsystemcomprisesfourprincipalcomponents:therock,thereinforcingelement,theinternalfixtureandtheexternalfixture.Forreinforcementwithabolt,thereinforcingelementreferstotheboltandtheexternalfixturereferstothefaceplateandnut.Theinternalfixtureiseitheramedium,suchascementmortarorresinforgroutedbolts,oramechanicalactionlike“friction”attheboltinterfaceforfrictionallycoupledbolts.Theinternalfixtureprovidesacouplingconditionattheinterface.Withreferencetothecomponentofinternalfixture,Windsorclassifiedthecurrentreinforcementdevicesintothreegroups:“continuouslymechanicallycoupled(CMC)”,“continuouslyfrictionallycoupled(CFC)”,“discretelymechanicallyorfrictionallycoupled(DMFC)”systems.Accordingtothisclassificationsystem,cementandresin-groutedboltsbelongtotheCMCsystem,whileSplitsetandSwellexboltsbelongtotheCFCsystem.Whenfullygroutedboltsaresubjectedtoapullload,failuremayoccurattheboltgroutinterface,inthegroutmediumoratthegroutrockinterfacedependingonwhichoneistheweakest.Forfullyfrictionallycoupledbolts,however,thereisonlyonepossibilityiffailuredecouplingattheboltrockinterface.Inthisstudyweconcentrateonthefailureattheinterfacebetweentheboltandthecouplingmedium(eitherthegroutmediumortherock).Ingeneral,theshearstrengthofaninterfacecomprisesthreecomponents:adhesion,mechanicalinterlockandfriction.Theyarelostinsequenceasthecompatibilityofdeformationislostacrosstheinterface.Theresultisadecouplingfrontthatattenuatesatanincreasingdistancefromthepointoftheappliedload.Thedecouplingfrontfirstmobilizestheadhesivecomponentofstrength,thenthemechanicalinterlockcomponentandfinallythefrictionalcomponent.Theshearstrengthoftheinterfacedecreasesduringthisprocess.Theshearstrengthafterthelossofsomeofthestrengthcomponentsiscalledtheresidualshearstrengthinthispaper.Forgroutedrockboltslikerebar,allthethreecomponentsofstrengthexistattheboltinterface.However,forthefullyfrictionallycoupledbolt,the“Splitset”bolt,onlyafrictioncomponentexistsattheboltinterface.ForSwellesbolts,mechanicalinterlockandfrictioncomprisethestrengthoftheinterface.3.Thetheoreticalbackgroundofrockboltsinpullouttests4.ConcludingremarksAnanalyticalmodelhasbeenestablishedforrockboltssubjectedtoapullloadinpullouttests.Decouplingstartsattheloadingpointandpropagatesalongtheboltwithanincreasingappliedload.Theshearstressatthedecoupledinterfaceislowerthantheultimateshearstressstrengthoftheinterfaceandevendropstozeroforfullygroutedbolts,whileitisapproximatelyatthesamemagnitudeastheultimateshearstressstrengthforfullyfrictionallycoupledinterfacedecreasesexponentiallywithincreasingdistancefromthedecouplingbolt.Twoanalyticalmodelshavebeendevelopedforrockboltsinsitu,oneforuniformrockdeformationandanotherfordiscretejointopening.Forrockboltsinsitu,themodelsconfirmthepreviousfindings:(i)inuniformlydeformedrockmasses,thebolthasapick-uplength,ananchorlengthandaneutralpoint;(ii)thefaceplateenhancesthereinforcementeffectthroughinducingadirecttensileloadintheboltandreducingtheshearstresscarriedontheboltsurface;(iii)injointedrockmasses,theopeningdisplacementofrockjointwillinduceaxialstresspeaksinthebolt.

中文譯文錨桿的分析模型C.Li*,B.Stillborg摘要:有三種錨桿的分析模型發(fā)展了起來:一種是在拉斷試驗(yàn)中,易受到集中拉力載荷影響作用的錨桿,一種是安裝在均勻變形巖體中的錨桿,另一種是易受到單個(gè)巖石節(jié)理影響作用的錨桿。這種分析模型是在注漿錨桿的錨桿與注漿之間或者是磨擦式錨桿的錨桿與巖石之間接觸面上的機(jī)械耦合作用描述的基礎(chǔ)上建立起來的。對(duì)于拉斷試驗(yàn)中的錨桿,當(dāng)接觸面上的變形較小時(shí),錨桿表面上的剪切應(yīng)力隨著距加載點(diǎn)距離的增加而成指數(shù)減小。如果施加的載荷足夠大時(shí),耦合首先發(fā)生加載點(diǎn)處,然后隨著載荷的增加而逐漸向錨桿的深處傳播。錨桿耦合部分的剪切應(yīng)力的大小取決于接觸面上的機(jī)械耦合作用。對(duì)于全長(zhǎng)錨固錨桿來說,耦合階段的剪切應(yīng)力比接觸面上的剪切強(qiáng)度的峰值要小,然而對(duì)于磨擦式錨桿,剪切應(yīng)力大致和剪切強(qiáng)度的峰值相同。安裝在均勻變形巖體中的錨桿,在建立錨桿分析模型時(shí),錨桿的加載過程要考慮到巖體的變形情況。模型的模擬實(shí)驗(yàn)證實(shí)了先前的研究結(jié)果,在軟巖中的錨桿有傳感長(zhǎng)度,錨固段長(zhǎng)度,和一個(gè)中性點(diǎn)。這個(gè)實(shí)驗(yàn)也說明了錨桿托盤在圍巖加固的效果中起著一個(gè)非常重要的作用。在有節(jié)理的巖體中,由于巖石節(jié)理的自由變形作用,錨桿軸向可能會(huì)有幾個(gè)應(yīng)力峰值發(fā)生在錨桿的延伸方向。1、前言在很長(zhǎng)一段時(shí)間來,錨桿廣泛的應(yīng)用于民用建筑和礦業(yè)工程的巖石加固。錨桿通過在巖體中抑制巖體的變形來加固圍巖。為了提高錨桿支護(hù)的結(jié)構(gòu),必須對(duì)在變形巖體中的錨桿的作用變化過程有一個(gè)良好的認(rèn)識(shí)。這些認(rèn)識(shí)可以通過現(xiàn)場(chǎng)監(jiān)測(cè)、實(shí)驗(yàn)室的試驗(yàn)、數(shù)字模擬和研究分析來獲得。自從20世紀(jì)70年代來,在不同的巖石地層中進(jìn)行了大量的錨桿現(xiàn)場(chǎng)監(jiān)測(cè)的研究工作。一個(gè)自由人士在Kielder的試驗(yàn)巷道中,進(jìn)行了大量關(guān)于注漿錨桿特性的研究工作。他監(jiān)測(cè)了錨桿的加載過程和應(yīng)力沿錨桿的分布情況。在他所監(jiān)測(cè)數(shù)據(jù)的基礎(chǔ)上,他提出了關(guān)于“傳感長(zhǎng)度”、“錨固長(zhǎng)度”、“中性點(diǎn)”的概念。在中性點(diǎn)上,錨桿和注漿之間的接觸面上的剪切應(yīng)力為零,然而在該點(diǎn)其軸向載荷的張力是一個(gè)峰值。傳感長(zhǎng)度指的是從接近錨桿末端的地方(在巷道壁上)到中性點(diǎn)的一段距離。在錨桿這部分是其剪切應(yīng)力來自于巖石的載荷,并把錨桿向巷道方向進(jìn)行拖拉。錨固長(zhǎng)度指的是從錨桿的中性點(diǎn)到錨桿深處(固定在巖石深度)的一部分錨桿。在這部分上的剪切應(yīng)力將錨桿錨固在巖石上。以上這些概念清楚的指出了安裝在已變形巖層中的錨桿的作用變化過程。Bjornfot和Stephansson的研究工作證明,在已有節(jié)理的巖體中,由于單個(gè)節(jié)理的由自變形,在沿錨桿的方向上可能不僅存在一個(gè)中性點(diǎn)而且有可能存在多個(gè)中性點(diǎn)。錨桿的拉斷試驗(yàn)通常用來監(jiān)測(cè)錨桿的錨固能力,在不同種類的巖石中已經(jīng)進(jìn)行了大量的這種拉斷試驗(yàn)工作測(cè)試。一著名人士進(jìn)行了大量的基礎(chǔ)工作來研究在拉力負(fù)荷的張力作用下錨桿的作用變化過程。他的解析方法指出:在錨桿發(fā)生耦合以前,錨桿的軸向應(yīng)力(也可能是錨桿接觸表面上的剪切應(yīng)力)從加載點(diǎn)到錨桿的深處呈指數(shù)減小的趨勢(shì)。圖1(a)說明了這種典型拉斷試驗(yàn)的結(jié)果,曲線a表示的是在相對(duì)較低的載荷情況下,沿錨桿方向軸向應(yīng)力的分布情況,在這個(gè)圖中可以看出,在錨桿錨固界面的兩則,其變形是相等的。曲線b表示的是在相對(duì)較高的載荷下,沿錨桿方向軸向應(yīng)力的分布,在此圖上,錨桿接觸面上已經(jīng)發(fā)生了耦合作用。圖1(b)表示的是安裝在地下煤礦的主水平巷中的錨桿上的軸向應(yīng)力分布情況。我們可以從這個(gè)圖上看出,在接近鉆孔口附近的軸向應(yīng)力分布情況與在拉斷試驗(yàn)中的分布情況完全不同。然而,錨桿深處階段部分的的應(yīng)力變化與拉斷試驗(yàn)中的結(jié)果相似。出現(xiàn)這種情況的原因是,在軟巖中的錨桿有傳感長(zhǎng)度和錨固長(zhǎng)度,然而在拉斷試驗(yàn)中的錨桿僅有錨固長(zhǎng)度。圖1在拉斷試驗(yàn)中,(a)軸向應(yīng)力沿在Hawkes和Evans之后的全錨固錨桿和(b)Sun之后的加固錨桿的分布我們認(rèn)為在錨桿中性點(diǎn)上,巖石和錨桿之間的相對(duì)移動(dòng)為零。在陶和陳的分析方法中,中性點(diǎn)的位置僅僅取決于巷道的半徑和錨桿的長(zhǎng)度。這種解決方法完善了由Kaiser和Hyett發(fā)明的分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論