版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省祁東縣第一中學(xué)數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知在一次降雨過程中,某地降雨量(單位:mm)與時間t(單位:min)的函數(shù)關(guān)系可表示為,則在時的瞬時降雨強度為()mm/min.A. B.C.20 D.4002.原點到直線的距離的最大值為()A. B.C. D.3.已知,則“”是“直線與平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知空間向量,,若,則實數(shù)的值是()A. B.0C.1 D.25.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.156.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或117.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=08.如圖,在四面體中,,,,分別為,,,的中點,則化簡的結(jié)果為()A. B.C. D.9.的二項展開式中,二項式系數(shù)最大的項是第()項.A.6 B.5C.4和6 D.5和710.2021年11月,鄭州二七罷工紀(jì)念塔入選全國職工愛國主義教育基地名單.某數(shù)學(xué)建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學(xué)在二七廣場A地測得紀(jì)念塔頂D的仰角為45°,乙同學(xué)在二七廣場B地測得紀(jì)念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀(jì)念塔的高CD為()A.40m B.63mC.m D.m11.已知雙曲線離心率為2,過點的直線與雙曲線C交于A,B兩點,且點P恰好是弦的中點,則直線的方程為()A. B.C. D.12.橢圓的短軸長為()A.8 B.2C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.定義離心率是的橢圓為“黃金橢圓”.已知橢圓是“黃金橢圓”,則_________.若“黃金橢圓”兩個焦點分別為、,P為橢圓C上的異于頂點的任意一點,點M是的內(nèi)心,連接并延長交于點N,則________.14.已知拋物線的頂點為O,焦點為F,動點B在C上,若點B,O,F(xiàn)構(gòu)成一個斜三角形,則______15.正四棱柱的高為底面邊長的倍,則其體對角線與底面所成角的大小為_________.16.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標(biāo)為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公差不為0的等差數(shù)列,首項,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列滿足,求數(shù)列的前n項和18.(12分)已知,(1)若,p且q為真命題,求實數(shù)x的取值范圍;(2)若p是q的充分條件,求實數(shù)m的取值范圍19.(12分)如圖所示,在直四棱柱中,底面ABCD是菱形,點E,F(xiàn)分別在棱,上,且,(1)證明:點在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值20.(12分)在中,(1)求的大?。唬?)若,.求的面積21.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性22.(10分)設(shè)命題方程表示中心在原點,焦點在坐標(biāo)軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對題設(shè)函數(shù)求導(dǎo),再求時對應(yīng)的導(dǎo)數(shù)值,即可得答案.【詳解】由題設(shè),,則,所以在時的瞬時降雨強度為mm/min.故選:B2、C【解析】求出直線過的定點,當(dāng)時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯(lián)立可得所以直線過定點,當(dāng)時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.3、A【解析】首先由兩直線平行的充要條件求出參數(shù)的取值,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】因為直線與平行,所以,解得或,所以“”是“直線與平行”的充分不必要條件.故選:A.4、C【解析】根據(jù)空間向量垂直的性質(zhì)進(jìn)行求解即可.【詳解】因為,所以,因此有.故選:C5、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C6、A【解析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關(guān)于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標(biāo)準(zhǔn)式方程得(x+1)2+(y﹣2)2=5,圓心坐標(biāo)為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關(guān)系7、A【解析】設(shè)出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設(shè)與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設(shè)為8、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C9、A【解析】由二項展開的中間項或中間兩項二項式系數(shù)最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數(shù)最大,易知當(dāng)r=5時,最大,即二項展開式中,二項式系數(shù)最大的為第6項.故選:A10、B【解析】設(shè),先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設(shè)塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.11、C【解析】運用點差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因為點P恰好是弦的中點,所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗滿足題意故選:C12、C【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,進(jìn)而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】第一空,直接套入“黃金橢圓”新定義即可,第二空,從內(nèi)切圓入手,找到等量關(guān)系,進(jìn)而得到,求解即可【詳解】由題,,所以如圖,連接,設(shè)內(nèi)切圓半徑為,則,即,∴,∴,∴∴,∴故答案為:;【點睛】本題從新定義出發(fā),第一空直接套用定義可得答案,第二空升華,需要在理解新定義的基礎(chǔ)上,借助內(nèi)切圓的相關(guān)公式求解,層層遞進(jìn),是一道好題.關(guān)鍵點在于找到“”這一關(guān)系14、2【解析】畫出簡單示意圖,令,根據(jù)拋物線定義可得,應(yīng)用數(shù)形結(jié)合及B在C上,求目標(biāo)式的值.【詳解】如下圖,令,直線為拋物線準(zhǔn)線,軸,由拋物線定義知:,又且,所以,故,又,故.故答案為:2.【點睛】關(guān)鍵點點睛:應(yīng)用拋物線的定義將轉(zhuǎn)化為,再由三角函數(shù)的定義及點在拋物線上求值.15、##【解析】如圖所示,其體對角線與底面所成角為,解三角形即得解.【詳解】解:如圖所示,設(shè),所以.由題得平面,則其體對角線與底面所成角為,因為,所以.故答案為:16、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點時,取得最小值,進(jìn)而求得點坐標(biāo).【詳解】由題意得:拋物線焦點為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設(shè)數(shù)列的公差為d,根據(jù)等比中項的概念即可求出公差,再根據(jù)等差數(shù)列的通項公式即可求出答案;(2)由(1)得,再根據(jù)分組求和法即可求出答案【詳解】解:(1)設(shè)數(shù)列的公差為d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【點睛】本題主要考查等差數(shù)列的通項公式,考查數(shù)列的分組求和法,考查計算能力,屬于基礎(chǔ)題18、(1);(2).【解析】(1)解一元二次不等式可得命題p,q所對集合,再求交集作答.(2)求出命題q所對集合,再利用集合的包含關(guān)系列式計算作答.【小問1詳解】解不等式得:,則命題p所對集合,當(dāng)時,解不等式得:,則命題q所對集合,由p且q為真命題,則,所以實數(shù)x的取值范圍是.【小問2詳解】解不等式得:,則命題q所對集合,因p是q的充分條件,則,于是得,解得,所以實數(shù)m的取值范圍是.19、(1)證明見解析;(2).【解析】(1)設(shè)、、、AC與BD的交點為O,由直四棱柱的性質(zhì)構(gòu)建空間直角坐標(biāo)系,確定、的坐標(biāo)可得,即可證結(jié)論.(2)由題設(shè),求出、、的坐標(biāo),進(jìn)而求得面BEF的法向量,利用空間向量夾角的坐標(biāo)表示求直線與平面BEF所成角的正弦值【小問1詳解】由題意,,設(shè),,,設(shè)AC與BD的交點為O,以O(shè)為坐標(biāo)原點,分別以BD,AC所在直線為x,y軸建立如下空間直角坐標(biāo)系,則,,,,所以,,得,即,因此點在平面BEF內(nèi)【小問2詳解】由(1)及題設(shè),,,,,所以,,設(shè)為平面BEF的法向量,則,令,即設(shè)直線與平面BEF所成角為,則20、(1)(2)【解析】(1)利用正弦定理將邊化角,再根據(jù)兩角和的正弦公式及誘導(dǎo)公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根據(jù)面積公式計算可得;【小問1詳解】解:因為,由正弦定理可得,即,又在中,,所以,,所以;【小問2詳解】解:由余弦定理得,即,解得,所以,又,所以;.21、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對求導(dǎo)得,因為在處取得極值,所以,即,解得;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年復(fù)合管道項目融資計劃書
- 《春都戰(zhàn)略決策分析》課件
- 養(yǎng)老院老人緊急救援預(yù)案制度
- 2024年新能源產(chǎn)業(yè)融資借款法律風(fēng)險控制服務(wù)合同3篇
- 房屋設(shè)計加裝修合同(2篇)
- 2024年度鐵藝健身器材安裝與維護(hù)合同3篇
- 2025年咸陽貨運從業(yè)資格證試題庫及答案
- 2025年吉林年貨運從業(yè)資格證考試試題
- 中考語文總復(fù)習(xí):《成語運用》課件
- 2024年度房屋評估合同:個人二手房購房評估服務(wù)協(xié)議3篇
- 顱腦損傷課件
- 滬教版英語八年級上冊知識點歸納匯總
- 裝飾裝修工程售后服務(wù)具體措施
- 糖皮質(zhì)激素類藥物臨床應(yīng)用指導(dǎo)原則(2023年)
- 16J607-建筑節(jié)能門窗
- 世界的海陸分布、世界的地形復(fù)習(xí)提綱
- 門診掛號系統(tǒng)實驗報告
- 53工廠質(zhì)量保證能力要求00C-005
- 百家宴活動方案
- 高一英語期末考試試卷分析
- 基于STM32單片機的智能澆花系統(tǒng)設(shè)計
評論
0/150
提交評論