2024屆甘肅省酒泉市敦煌中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2024屆甘肅省酒泉市敦煌中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2024屆甘肅省酒泉市敦煌中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2024屆甘肅省酒泉市敦煌中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2024屆甘肅省酒泉市敦煌中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆甘肅省酒泉市敦煌中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.2.已知橢圓和雙曲線有共同的焦點(diǎn),分別是它們的在第一象限和第三象限的交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.33.橢圓的焦點(diǎn)坐標(biāo)為()A., B.,C., D.,4.已知實數(shù)a,b,c,若a>b,則下列不等式成立的是()A B.C. D.5.已知空間直角坐標(biāo)系中的點(diǎn),,,則點(diǎn)P到直線AB的距離為()A. B.C. D.6.曲線的一個焦點(diǎn)F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標(biāo)原點(diǎn),若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.7.若雙曲線(,)的焦距為,且漸近線經(jīng)過點(diǎn),則此雙曲線的方程為()A. B.C. D.8.已知橢圓與雙曲線有相同的焦點(diǎn)、,橢圓的離心率為,雙曲線的離心率為,點(diǎn)P為橢圓與雙曲線的交點(diǎn),且,則當(dāng)取最大值時的值為()A. B.C. D.9.已知數(shù)列中,且滿足,則()A.2 B.﹣1C. D.10.橢圓上一點(diǎn)到一個焦點(diǎn)的距離為,則到另一個焦點(diǎn)的距離是()A. B.C. D.11.設(shè)為橢圓上一點(diǎn),,為左、右焦點(diǎn),且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點(diǎn)構(gòu)不成三角形12.直線的一個法向量為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知某次數(shù)學(xué)期末試卷中有8道4選1的單選題14.已知某農(nóng)場某植物高度,且,如果這個農(nóng)場有這種植物10000棵,試估計該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.15.我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案.通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖,則a=______________16.圓上的點(diǎn)到直線的距離的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:9x2+y2=m2(m>0),直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個交點(diǎn)A,B,線段AB的中點(diǎn)為M(1)證明:直線OM的斜率與l的斜率的乘積為定值;(2)若l過點(diǎn),延長線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率,若不能,說明理由18.(12分)已知拋物線上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.(1)求拋物線E的方程;(2)點(diǎn)A、B為拋物線E上異于原點(diǎn)O的兩不同的點(diǎn),且滿足.若直線AB與橢圓恒有公共點(diǎn),求m的取值范圍.19.(12分)如圖,三棱錐中,,,,,,點(diǎn)是PA的中點(diǎn),點(diǎn)D是AC的中點(diǎn),點(diǎn)N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.20.(12分)在四棱錐中,底面ABCD是矩形,點(diǎn)E是線段PA的中點(diǎn).(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點(diǎn)E到平面PDB的距離.21.(12分)某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點(diǎn)站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):間隔時間x/分101112131415等候人數(shù)y/人232526292831調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.(1)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程=x+,并判斷此方程是否是“恰當(dāng)回歸方程”.(2)假設(shè)該起點(diǎn)站等候人數(shù)為24人,請你根據(jù)(1)中的結(jié)論預(yù)測車輛發(fā)車間隔多少時間合適?附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(xn,yn),其回歸直線=x+的斜率和截距的最小二乘估計分別為22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點(diǎn),F(xiàn)為PC上一點(diǎn),且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.2、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查共焦點(diǎn)的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點(diǎn)三角形的關(guān)系列出齊次方程式進(jìn)行求解.3、A【解析】由題方程化為橢圓的標(biāo)準(zhǔn)方程求出c,則橢圓的焦點(diǎn)坐標(biāo)可求【詳解】由題得方程可化為,所以所以焦點(diǎn)為故選:A.4、C【解析】根據(jù)不等式的性質(zhì)逐一分析即可得出答案.【詳解】解:對于A,因為a>b,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若a>b,又,所以,故C正確;對于D,當(dāng)時,,故D錯誤.故選:C.5、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點(diǎn)到直線的距離為.故選:D6、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A7、B【解析】根據(jù)題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經(jīng)過點(diǎn),故,故,雙曲線方程為:.故選:.【點(diǎn)睛】本題考查了雙曲線方程,意在考查學(xué)生對于雙曲線基本知識的掌握情況.8、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設(shè)為第一象限的交點(diǎn),、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時等號成立,此時故選:D9、C【解析】首先根據(jù)數(shù)列的遞推公式求出數(shù)列的前幾項,即可得到數(shù)列的周期性,即可得解;【詳解】解:因為且,所以,,,所以是周期為的周期數(shù)列,所以,故選:C10、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點(diǎn)的距離是.故選:B.11、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進(jìn)而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.12、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設(shè)法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##0.84375【解析】合理設(shè)出事件,利用全概率公式進(jìn)行求解.【詳解】設(shè)小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:14、1359【解析】由已知求得,則,結(jié)合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135915、3##【解析】由頻率之和等于1,即矩形面積之和為1可得.【詳解】由題知,解得.故答案為:0.316、【解析】先求得圓心到直線的距離,結(jié)合圓上的點(diǎn)到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標(biāo)為,半徑為,則圓心到直線的距離為,所以圓上的點(diǎn)到直線的距離的最大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)能為平行四邊形;斜率為4-或4+【解析】(1)設(shè)兩點(diǎn)坐標(biāo),由點(diǎn)差法證明(2)求出兩點(diǎn)坐標(biāo),由平行四邊形的幾何性質(zhì)判斷【小問1詳解】設(shè)的斜率為,,兩式相減可得,即故【小問2詳解】由(1)得的直線為,直線方程為聯(lián)立,解得聯(lián)立解得若四邊形OAPB為平行四邊形,則對角線互相平分為中點(diǎn),解得,經(jīng)檢驗,均符合題意故四邊形OAPB能為平行四邊形,此時斜率為4-或4+18、(1)(2)【解析】(1)由焦半徑公式可得,求解即可得答案;(2)由題意,直線AB斜率不為0,設(shè),,聯(lián)立直線與拋物線的方程,由韋達(dá)定理及可得,從而可得直線AB恒過定點(diǎn),進(jìn)而可得定點(diǎn)在橢圓內(nèi)部或橢圓上即可求解.【小問1詳解】解:因為拋物線上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4,所以,解得,所以拋物線E的方程為;【小問2詳解】解:由題意,直線AB斜率不為0,設(shè),,由,可得,所以,因為,即,所以,所以,即,所以,所以直線,所以直線AB恒過定點(diǎn),因為直線AB與橢圓恒有公共點(diǎn),所以定點(diǎn)在橢圓內(nèi)部或橢圓上,即,所以.19、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標(biāo)系,得到相關(guān)點(diǎn)和相關(guān)向量的坐標(biāo),(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標(biāo)系∵,,點(diǎn)M是PA的中點(diǎn),點(diǎn)D是AC的中點(diǎn),點(diǎn)N在PB上且∴,,,,,設(shè)平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小問2詳解】,,∴平面∴為平面的法向量則與的夾角的補(bǔ)角是平面與平面所成二面角的平面角.∴平面與平面所成角的余弦值為.20、(1)見解析(2)【解析】(1)連接交于點(diǎn),連接,由中位線定理結(jié)合線面平行的判定證明即可;(2)由得出點(diǎn)到平面的距離,再由是的中點(diǎn),得出點(diǎn)到平面的距離.【小問1詳解】連接交于點(diǎn),連接.因為分別是的中點(diǎn),所以.又平面EBD,平面EBD,所以平面EBD;【小問2詳解】過點(diǎn)作的垂線,垂足為,連接.因為平面平面ABCD,平面平面ABCD,所以平面ABCD,所以,設(shè)點(diǎn)到平面的距離為因為,所以,因為點(diǎn)是的中點(diǎn),所以點(diǎn)到平面的距離為.21、(1),是“恰當(dāng)回歸方程”;(2)10分鐘較合適.【解析】(1)應(yīng)用最小二乘法求出回歸直線方程,再分別估計、時的值,結(jié)合“恰當(dāng)回歸方程”的定義判斷是否為“恰當(dāng)回歸方程”.(2)根據(jù)(1)所得回歸直線方程,將代入求x值即可.【小問1詳解】中間4組數(shù)據(jù)是:間隔時間(分鐘)11121314等候人數(shù)(人)25262928因為,所以,故,又,所以,當(dāng)時,,而;當(dāng)時,,而;所以所求的線性回歸方程是“恰當(dāng)回歸方程”;【小問2詳解】由(1)知:當(dāng)時,,所以預(yù)測

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論