版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇省常州市“教學(xué)研究合作聯(lián)盟”高二上數(shù)學(xué)期末檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線過點(diǎn)且與雙曲線僅有一個(gè)公共點(diǎn),則這樣的直線有()A.1條 B.2條C.3條 D.4條2.和的等差中項(xiàng)與等比中項(xiàng)分別為()A., B.2,C., D.1,3.若,,且,則()A. B.C. D.4.函數(shù)的最大值為()A.32 B.27C.16 D.405.《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個(gè)人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個(gè)人各出多少錢?”在這個(gè)問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.166.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.8.阿基米德既是古希臘著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的中心為原點(diǎn),焦點(diǎn)、在軸上,橢圓的面積為,且離心率為,則的標(biāo)準(zhǔn)方程為()A. B.C. D.9.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則的最小值為()A. B.C. D.10.若函數(shù),則單調(diào)增區(qū)間為()A. B.C. D.11.下面三種說法中,正確說法的個(gè)數(shù)為()①如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;②兩條直線可以確定一個(gè)平面;③若,,,則A.1 B.2C.3 D.012.積分()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,若,則該數(shù)列的通項(xiàng)公式__________14.若點(diǎn)為圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線距離的最大值為________15.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______16.?dāng)?shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長(zhǎng)為3的正方形,是中點(diǎn),求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)存在兩個(gè)極值點(diǎn),且,若,求證:.19.(12分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍20.(12分)已知等差數(shù)列前n項(xiàng)和為,,,若對(duì)任意的正整數(shù)n成立,求實(shí)數(shù)的取值范圍.21.(12分)已知雙曲線中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)(1)求雙曲線方程;(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若,求直線l的方程22.(10分)已知橢圓C:的長(zhǎng)軸長(zhǎng)為4,過C的一個(gè)焦點(diǎn)且與x軸垂直的直線被C截得的線段長(zhǎng)為3(1)求C的方程;(2)若直線:與C交于A,B兩點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),且,求m的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時(shí),直線過雙曲線的右頂點(diǎn),方程為,滿足題意;當(dāng)直線的斜率存在時(shí),若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個(gè)公共點(diǎn).綜上可得,滿足條件的直線共有3條.故選:C.【點(diǎn)睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個(gè)易錯(cuò)點(diǎn),著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】根據(jù)等差中項(xiàng)和等比中項(xiàng)的概念分別求值即可.【詳解】和的等差中項(xiàng)為,和的等比中項(xiàng)為.故選:C.3、A【解析】由于對(duì)數(shù)函數(shù)的存在,故需要對(duì)進(jìn)行放縮,結(jié)合(需證明),可放縮為,利用等號(hào)成立可求出,進(jìn)而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當(dāng)且僅當(dāng),等號(hào)成立.所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,又,所以,即,所以,又,所以,,故故選:A4、A【解析】利用導(dǎo)數(shù)即可求解.【詳解】因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),.所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞增,,因此,的最大值為.故選:A5、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項(xiàng)和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.6、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因?yàn)槊}:或,命題:,所以是的必要不充分條件,故選:B7、D【解析】因?yàn)閽佄锞€方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).8、A【解析】設(shè)橢圓方程為,解方程組即得解.【詳解】解:設(shè)橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因?yàn)闄E圓的焦點(diǎn)在軸上,所以的標(biāo)準(zhǔn)方程為.故選:A.9、B【解析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,因?yàn)?,則,所以,,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:B.10、C【解析】求出導(dǎo)函數(shù),令解不等式即可得答案.【詳解】解:因?yàn)楹瘮?shù),所以,令,得,所以的單調(diào)增區(qū)間為,故選:C.11、A【解析】對(duì)于①,有兩種情況,對(duì)于②考慮異面直線,對(duì)于③根據(jù)線面公理可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故①不正確;兩條異面直線不能確定一個(gè)平面,故②不正確;若,,,可知必在交線上,則,故③正確;綜上所述只有一個(gè)說法是正確的.故選:A12、B【解析】根據(jù)定積分的幾何意義求值即可.【詳解】由題設(shè),定積分表示圓在x軸的上半部分,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知可得數(shù)列是以為首項(xiàng),3為公比的等比數(shù)列,結(jié)合等比數(shù)列通項(xiàng)公式即可得解.【詳解】解:由在數(shù)列中,若,則數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,由等比數(shù)列通項(xiàng)公式可得,故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列通項(xiàng)公式的求法,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.14、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計(jì)算作答.【詳解】圓的圓心,半徑,點(diǎn)C到直線的距離,所以圓C上點(diǎn)P到直線l距離的最大值為.故答案為:715、【解析】根據(jù)橢圓定義得出,進(jìn)而對(duì)進(jìn)行化簡(jiǎn),結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.16、【解析】根據(jù)題中所給的遞推式得到數(shù)列具有周期性,進(jìn)而得到結(jié)果.【詳解】根據(jù)題中遞推式知,可知數(shù)列具有周期性,周期為3,因?yàn)楣使蚀鸢笧椋喝⒔獯痤}:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線面角定義進(jìn)行求解即可.【小問1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問2詳解】∵平面平面,交AD于點(diǎn)F,平面,平面平面,∴平面,以為原點(diǎn),,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,求得法向量為,由,所以直線與平面所成角的正弦值為.18、(1)在和上單調(diào)遞增,在上單調(diào)遞減;(2)證明見解析【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),再令、,分別求出函數(shù)的單調(diào)區(qū)間;(2)先求出,構(gòu)造函數(shù),求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,從而證明結(jié)論【小問1詳解】解:當(dāng)時(shí),,所以,令,解得或,令,解得,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】解:,,,因?yàn)榇嬖趦蓚€(gè)極值點(diǎn),,所以存在兩個(gè)互異的正實(shí)數(shù)根,,所以,,則,所以,所以,令,則,,,在上單調(diào)遞減,,而,即,19、(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和(2)【解析】(1)求出,然后可得答案;(2)由條件可得,設(shè),則,然后利用導(dǎo)數(shù)可得在上單調(diào)遞增,,然后分、兩種情況討論求解即可.【小問1詳解】由題可得令,得;令,得,所以f(x)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和【小問2詳解】由,得,即設(shè),則設(shè),則當(dāng)時(shí),,,所以所以即在上單調(diào)遞增,則若,則,所以h(x)在上單調(diào)遞增所以h(x)≥h(0)=0恒成立,符合題意若a>2,則,必存在正實(shí)數(shù),滿足:當(dāng)時(shí),,h(x)單調(diào)遞減,此時(shí)h(x)<h(0)=0,不符合題意綜上所述,a的取值范圍是20、【解析】設(shè)等差數(shù)列的公差為,根據(jù)題意得,解方程得,,進(jìn)而得,故恒成立,再結(jié)合二次函數(shù)的性質(zhì)得當(dāng)或4時(shí),取得最小值,進(jìn)而得答案.【詳解】解:設(shè)等差數(shù)列的公差為,由已知,.聯(lián)立方程組,解得,.所以,,由題意,即.令,其圖象為開口向上的拋物線,對(duì)稱軸為,所以當(dāng)或4時(shí),取得最小值,所以實(shí)數(shù)的取值范圍是.21、(1)(2)或【解析】(1)依題意設(shè)所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設(shè),即可得到的坐標(biāo),依題意可得或,分兩種情況分別求出的坐標(biāo),再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設(shè)所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點(diǎn),∴l(xiāng)的斜率一定存在,則設(shè).令得,∵且M、Q、F共線于l,∴或當(dāng)時(shí),,,∴,∵Q在雙曲線上,∴,∴,當(dāng)時(shí),,代入雙曲線可得:,∴綜上所求直線l的方程為:或22、(1);(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代企業(yè)供應(yīng)鏈管理與優(yōu)化
- 生態(tài)城市規(guī)劃中的生態(tài)環(huán)境教育
- 生命教育在職業(yè)教育中的價(jià)值與挑戰(zhàn)
- Unit 1 School life Reading B 說課稿 -2024-2025學(xué)年高一上學(xué)期英語上外版(2020)必修第一冊(cè)
- 2023六年級(jí)英語上冊(cè) Review Module Unit 1說課稿 外研版(三起)
- 3 古詩詞三首《宿建德江》說課稿-2024-2025學(xué)年語文六年級(jí)上冊(cè)統(tǒng)編版
- 6《記錄我的一天》大單元整體設(shè)計(jì)(說課稿)-2024-2025學(xué)年一年級(jí)上冊(cè)數(shù)學(xué)北師大版
- 2024年春九年級(jí)語文下冊(cè) 第1課《國(guó)殤》說課稿4 長(zhǎng)春版
- 2024秋五年級(jí)英語上冊(cè) Unit 4 Jenny and Danny Come to China Lesson 21 What Year Is It說課稿 冀教版(三起)
- 2《找春天》說課稿-2023-2024學(xué)年二年級(jí)下冊(cè)語文統(tǒng)編版
- 后勤安全生產(chǎn)
- 項(xiàng)目重點(diǎn)難點(diǎn)分析及解決措施
- 挑戰(zhàn)杯-申報(bào)書范本
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)期末測(cè)試卷及答案共5套
- 電子商務(wù)視覺設(shè)計(jì)(第2版)完整全套教學(xué)課件
- 2025年九省聯(lián)考新高考 語文試卷(含答案解析)
- 第1課《春》公開課一等獎(jiǎng)創(chuàng)新教案設(shè)計(jì) 統(tǒng)編版語文七年級(jí)上冊(cè)
- 全過程工程咨詢投標(biāo)方案(技術(shù)方案)
- 心理健康教育學(xué)情分析報(bào)告
- 安宮牛黃丸的培訓(xùn)
- 2024年人教版(新起點(diǎn))三年級(jí)英語下冊(cè)知識(shí)點(diǎn)匯總
評(píng)論
0/150
提交評(píng)論