安徽省廬巢六校聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁
安徽省廬巢六校聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁
安徽省廬巢六校聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁
安徽省廬巢六校聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁
安徽省廬巢六校聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省廬巢六校聯(lián)盟2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是原點(diǎn),若;則的面積為()A. B.C. D.2.在中,角A,B,C的對(duì)邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形3.設(shè)為拋物線焦點(diǎn),直線,點(diǎn)為上任意一點(diǎn),過點(diǎn)作于,則()A.3 B.4C.2 D.不能確定4.已知拋物線,過其焦點(diǎn)且斜率為1的直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為()A. B.C. D.5.已知點(diǎn)是拋物線上的一點(diǎn),F是拋物線的焦點(diǎn),則點(diǎn)M到F的距離等于()A.6 B.5C.4 D.26.設(shè),則有()A. B.C. D.7.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.8.圓與直線的位置關(guān)系是()A.相交 B.相切C.相離 D.不能確定9.是等差數(shù)列,且,,則的值()A. B.C. D.10.已知數(shù)列中,且滿足,則()A.2 B.﹣1C. D.11.有6本不同的書,按下列方式進(jìn)行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;12.一物體做直線運(yùn)動(dòng),其位移(單位:)與時(shí)間(單位:)的關(guān)系是,則該物體在時(shí)的瞬時(shí)速度是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線的方向向量為,平面的一個(gè)法向量為,則直線與平面所成角的正弦值為______.14.在中.若成公比為的等比數(shù)列,則____________15.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________16.根據(jù)某市有關(guān)統(tǒng)計(jì)公報(bào)顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對(duì)外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進(jìn)口總額(單位:千億元)和出口總額(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年若每年的進(jìn)出口總額,滿足線性相關(guān)關(guān)系,則______;若計(jì)劃2022年出口總額達(dá)到千億元,預(yù)計(jì)該年進(jìn)口總額為______億元三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點(diǎn)E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點(diǎn),求直線PC與平面AED所成的角的正弦值.18.(12分)在等差數(shù)列中,,(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和19.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F且斜率大于0的直線交拋物線C于A,B兩點(diǎn)(其中A在B的上方),過線段AB的中點(diǎn)M且與x軸平行的直線依次交直線OA、OB,l于點(diǎn)P、Q、N(1)試探索PM與NQ長(zhǎng)度的大小關(guān)系,并證明你的結(jié)論;(2)當(dāng)P、Q是線段MN的三等分點(diǎn)時(shí),求直線AB的斜率;(3)當(dāng)P、Q不是線段MN的三等分點(diǎn)時(shí),證明:以點(diǎn)Q為圓心、線段QO長(zhǎng)為半徑的圓Q不可能包圍線段NP20.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.21.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點(diǎn),將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點(diǎn),求直線DE與平面PBD所成角的正弦值22.(10分)已知拋物線的焦點(diǎn)F到準(zhǔn)線的距離為2(1)求C的方程;(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在C上,點(diǎn)Q滿足,求直線斜率最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】拋物線焦點(diǎn)為,準(zhǔn)線方程為,由得或所以,故答案為C考點(diǎn):1、拋物線的定義;2、直線與拋物線的位置關(guān)系2、B【解析】由余弦定理可得,再利用可得答案.【詳解】因?yàn)?,所以,由余弦定理,因?yàn)?,所以,又,∴,故為直角三角?故選:B.3、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因?yàn)檫^點(diǎn)作于,可得,所以,故選:A.4、B【解析】設(shè),進(jìn)而根據(jù)題意,結(jié)合中點(diǎn)弦的問題得,進(jìn)而再求解準(zhǔn)線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因?yàn)橹本€AB的斜率為1,線段AB的中點(diǎn)的橫坐標(biāo)為3,所以,即,所以拋物線,準(zhǔn)線方程為.故選:B5、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.6、A【解析】利用作差法計(jì)算與比較大小即可求解.【詳解】因?yàn)?,,所以,所以,故選:A.7、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.8、B【解析】用圓心到直線的距離與半徑的大小判斷【詳解】解:圓的圓心到直線的距離,等于圓的半徑,所以圓與直線相切,故選:B9、B【解析】根據(jù)等差數(shù)列的性質(zhì)計(jì)算【詳解】因?yàn)槭堑炔顢?shù)列,所以,,也成等差數(shù)列,所以故選:B10、C【解析】首先根據(jù)數(shù)列的遞推公式求出數(shù)列的前幾項(xiàng),即可得到數(shù)列的周期性,即可得解;【詳解】解:因?yàn)榍?,所以,,,所以是周期為的周期?shù)列,所以,故選:C11、D【解析】根據(jù)題意,分別按照選項(xiàng)說法列式計(jì)算驗(yàn)證即可做出判斷.【詳解】選項(xiàng)A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項(xiàng)正確.故選:D.12、A【解析】先對(duì)求導(dǎo),然后將代入導(dǎo)數(shù)式,可得出該物體在時(shí)的瞬時(shí)速度【詳解】對(duì)求導(dǎo),得,,因此,該物體在時(shí)的瞬時(shí)速度為,故選A【點(diǎn)睛】本題考查瞬時(shí)速度的概念,考查導(dǎo)數(shù)與瞬時(shí)變化率之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:14、【解析】由條件可得,即,由余弦定理可得答案.【詳解】由成公比為的等比數(shù)列,即由正弦定理可知所以故答案為:15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】解:因,所以,又故切線方程為,整理為,故答案為:16、①.1.6②.3.65千##3650【解析】根據(jù)給定數(shù)表求出樣本中心點(diǎn),代入即可求得,取可求出該年進(jìn)口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點(diǎn),由,解得,此時(shí),,當(dāng)時(shí),即,解得,所以,預(yù)計(jì)該年進(jìn)口總額為千億元.故答案為:1.6;3.65千三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標(biāo)系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因?yàn)镻A⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設(shè)平面的一個(gè)法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為18、(1);(2).【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式求解;(2)運(yùn)用裂項(xiàng)相消法求數(shù)列的和.詳解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和裂項(xiàng)相消法求數(shù)列的和.19、(1),證明見解析(2)(3)證明見解析【解析】(1)根據(jù)已知條件設(shè)出直線方程及,與拋物線的方程聯(lián)立,利用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,三點(diǎn)共線的性質(zhì)即可求解;(2)根據(jù)已知條件得出,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,可得出直線的斜率;(3)根據(jù)(1)的結(jié)論及求根公式,求得點(diǎn)的坐標(biāo),結(jié)合的表達(dá)式,結(jié)合圖形可知,由的范圍和的取值即可證明.【小問1詳解】由題意可知,拋物線的焦點(diǎn)為,設(shè)直線的方程為,則,消去,得,,,所以直線的方程為,由因?yàn)槿c(diǎn)共線,所以,,同理,,,所以,所以.【小問2詳解】因?yàn)镻、Q是線段MN的三等分點(diǎn),所以,,,又,,所以,所以,解得或(舍)所以直線AB的斜率為.【小問3詳解】由(1)知,,得,所以,,又,,,,當(dāng)時(shí),,由圖可知,,而只要,就有,所以當(dāng)P、Q不是線段MN的三等分點(diǎn)時(shí),以點(diǎn)Q為圓心、線段QO長(zhǎng)為半徑的圓Q不可能包圍線段NP20、(1)證明過程見解析;(2).【解析】(1)利用平面與平面垂直的性質(zhì)得出直線與平面垂直,進(jìn)而得出平面;(2)建立空間直角坐標(biāo)系即可求解.【小問1詳解】證明:因?yàn)槠矫嫫矫?,交線為且平面中,所以平面又平面所以又,且所以平面【小問2詳解】解:由(1)知,平面且所以、、兩兩垂直因此以原點(diǎn),建立如圖所示的空間直角坐標(biāo)系因?yàn)?,,,設(shè)所以,,,,由(1)知,平面所以為平面的法向量且因?yàn)橹本€與平面所成角的正弦值為所以解得:所以,又,,所以,,,設(shè)平面與平面的法向量分別為:,所以,令,則令,則,,即設(shè)平面與平面夾角為則所以平面與平面夾角的余弦值為.21、(1)證明見解析;(2).【解析】(1)推導(dǎo)出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因?yàn)辄c(diǎn)A、D分別為MB、MC中點(diǎn),所以,又,所以,所以.因?yàn)?,所以,又,所以平面,又平面,所以平面平面;【小?詳解】因?yàn)椋?,,所以兩兩垂直,以A為坐標(biāo)原點(diǎn),建立如圖空間直角坐標(biāo)系,,則,設(shè)平面的一個(gè)法向量為,則,令,得,所以,設(shè)直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.22、(1);(2)最大值為.【解析】(1)由拋物線焦點(diǎn)與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識(shí)可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點(diǎn),準(zhǔn)線方程為,由題意,該拋物線焦點(diǎn)到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時(shí),;當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,此時(shí),當(dāng)且僅當(dāng),即時(shí),等號(hào)成立;當(dāng)時(shí),;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結(jié)合法同方法一得到點(diǎn)Q的軌跡方程為設(shè)直線的方程為,則當(dāng)直線與拋物線相切時(shí),其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點(diǎn)Q的軌跡方程為設(shè)直線的斜率為k,則令,則的對(duì)稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設(shè)因,所以于是,所以則直線的斜率為當(dāng)且僅當(dāng),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論