寧夏青銅峽一中2023年高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第1頁
寧夏青銅峽一中2023年高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第2頁
寧夏青銅峽一中2023年高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第3頁
寧夏青銅峽一中2023年高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第4頁
寧夏青銅峽一中2023年高二上數(shù)學(xué)期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

寧夏青銅峽一中2023年高二上數(shù)學(xué)期末綜合測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,在中,,,,AD為BC邊上的高,;若,則的值為()A. B.C. D.2.如圖,把橢圓的長軸分成6等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),則()A.20 B.C.36 D.303.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點(diǎn),,則=()A. B.C. D.4.設(shè)變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-25.設(shè)圓:和圓:交于A,B兩點(diǎn),則線段AB所在直線的方程為()A. B.C. D.6.已知A,B,C是橢圓M:上三點(diǎn),且A(A在第一象限,B關(guān)于原點(diǎn)對稱,,過A作x軸的垂線交橢圓M于點(diǎn)D,交BC于點(diǎn)E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.7.方程表示的曲線是()A.一個(gè)橢圓和一個(gè)點(diǎn) B.一個(gè)雙曲線的右支和一條直線C.一個(gè)橢圓一部分和一條直線 D.一個(gè)橢圓8.從某個(gè)角度觀察籃球(如圖1),可以得到一個(gè)對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.9.某地政府為落實(shí)疫情防控常態(tài)化,不定時(shí)從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進(jìn)行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.52210.已知拋物線,則其焦點(diǎn)到準(zhǔn)線的距離為()A. B.C.1 D.411.已知數(shù)列的前項(xiàng)和,且,則()A. B.C. D.12.如圖,在正方體中,E為的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________.14.中國的西氣東輸工程把西部地區(qū)的資源優(yōu)勢變?yōu)榻?jīng)濟(jì)優(yōu)勢,實(shí)現(xiàn)了天然氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟(jì)發(fā)展.輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為的峽谷拐入寬為的峽谷,如圖所示,位于峽谷懸崖壁上兩點(diǎn),的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(diǎn)(點(diǎn),,在同一水平面內(nèi)),設(shè)與較寬側(cè)峽谷懸崖壁所成的角為,則的長為______(用表示).要使輸氣管順利通過拐角,其長度不能低于______.15.圓錐曲線的焦點(diǎn)在軸上,離心率為,則實(shí)數(shù)的值是__________.16.已知雙曲線的右焦點(diǎn)為,過點(diǎn)作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點(diǎn).若,則雙曲線的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值18.(12分)有一種魚的身體吸收汞,當(dāng)這種魚身體中的汞含量超過其體重的1.00ppm(即百萬分之一)時(shí),人食用它,就會對人體產(chǎn)生危害.現(xiàn)從一批該魚中隨機(jī)選出30條魚,檢驗(yàn)魚體中的汞含量與其體重的比值(單位:ppm),數(shù)據(jù)統(tǒng)計(jì)如下:0.070.240.390.540.610.660.730.820.820.820.870.910.950.980.981.021.021.081.141.201.201.261.291.311.371.401.441.581.621.68(1)求上述數(shù)據(jù)的眾數(shù),并估計(jì)這批魚該項(xiàng)數(shù)據(jù)的80%分位數(shù);(2)有A,B兩個(gè)水池,兩水池之間有8個(gè)完全相同的小孔聯(lián)通,所有的小孔均在水下,且可以同時(shí)通過2條魚①將其中汞的含量最低的2條魚分別放入A水池和B水池中,若這2條魚的游動相互獨(dú)立,均有的概率進(jìn)入另一水池且不再游回,求這兩條魚最終在同一水池的概率;②將其中汞的含量最低的2條魚都先放入A水池中,若這2條魚均會獨(dú)立地且等可能地從其中任意一個(gè)小孔由A水池進(jìn)入B水池且不再游回A水池,求這兩條魚由不同小孔進(jìn)入B水池的概率19.(12分)已知函數(shù),其中(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)①若恒成立,求的最小值;②證明:,其中.20.(12分)在等比數(shù)列中,已知,(1)若,求數(shù)列的前項(xiàng)和;(2)若以數(shù)列中的相鄰兩項(xiàng),構(gòu)造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同21.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時(shí),求實(shí)數(shù)a的取值范圍;若命題q為假時(shí),求實(shí)數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實(shí)數(shù)a的取值范圍22.(10分)已知三角形的內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題意求得,化簡得到,結(jié)合,求得的值,即可求解.【詳解】在中,,,,AD為BC邊上的高,可得,由又因?yàn)?,所以,所?故選:B.2、D【解析】由橢圓的對稱性可知,,代入計(jì)算可得答案.【詳解】設(shè)橢圓左焦點(diǎn)為,連接由橢圓的對稱性可知,,所以.故選:D.3、A【解析】根據(jù)空間向量的加減法運(yùn)算法則,直接寫出向量的表達(dá)式,即可得答案.【詳解】=,故選:A.4、D【解析】轉(zhuǎn)化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結(jié)合即得解【詳解】轉(zhuǎn)化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當(dāng)直線經(jīng)過時(shí),在軸上的截距最大,最小,此時(shí),故選:D5、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因?yàn)閳A:①和圓:②交于A,B兩點(diǎn)所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A6、C【解析】設(shè)出點(diǎn),,的坐標(biāo),將點(diǎn),分別代入橢圓方程兩式作差,構(gòu)造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點(diǎn)在軸上,且為的中點(diǎn),則.【詳解】設(shè),,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點(diǎn)在軸上,且為的中點(diǎn)即,則正確.故選:C.7、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個(gè)橢圓的一部分和一條直線.故選:C8、D【解析】設(shè)出雙曲線方程,通過做標(biāo)準(zhǔn)品和雙曲線與圓O的交點(diǎn)將圓的周長八等分,且AB=BC=CD,推出點(diǎn)在雙曲線上,然后求出離心率即可.【詳解】設(shè)雙曲線的方程為,則,因?yàn)锳B=BC=CD,所以,所以,因?yàn)樽鴺?biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D9、D【解析】根據(jù)題意,求得組數(shù)與抽中編號的對應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設(shè)第組抽中的編號為,設(shè),由題可知:,故可得,故可得.當(dāng)時(shí),.故選:.10、B【解析】化簡拋物線的方程為,求得,即為焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題意,拋物線,即,解得,即焦點(diǎn)到準(zhǔn)線的距離是故選:B11、C【解析】由an=Sn-Sn-1,【詳解】解:因?yàn)?,所以,,兩式相減可得,即,因?yàn)椋?,所以,即,時(shí),也滿足上式,所以,所以,故選:C.12、D【解析】構(gòu)建空間直角坐標(biāo)系,求直線的方向向量、平面的法向量,應(yīng)用空間向量的坐標(biāo)表示,求直線與平面所成角的正弦值.【詳解】以點(diǎn)D為坐標(biāo)原點(diǎn),向量分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,可得,,,設(shè)面的法向量為,有,取,則,所以,,,則直線與平面所成角的正弦值為故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】函數(shù)有兩個(gè)不同零點(diǎn)即y=a與g(x)=圖像有兩個(gè)交點(diǎn),畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個(gè)不同的零點(diǎn),令,則y=a與g(x)=圖像有兩個(gè)交點(diǎn),∵,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,∴當(dāng)時(shí),,作出函數(shù)與的圖象,∴當(dāng)時(shí),y=a與g(x)有兩個(gè)交點(diǎn)﹒故答案為:﹒14、①.②.【解析】(1)利用三角關(guān)系分別利用表示、即可求解;(2)利用導(dǎo)數(shù)求最小值的方法即可求解.【詳解】過點(diǎn)分別作,,垂足分別為,,則,在中,,則,同理可得,所以.令,則,令,,得,即,由,解得,當(dāng)時(shí),;當(dāng)時(shí),,所以當(dāng)時(shí),取得極小值,也是最小值,則,故輸氣管的長度不能低于m.故答案為:;.15、【解析】根據(jù)圓錐曲線焦點(diǎn)在軸上且離心率小于1,確定a,b求解即可.【詳解】因?yàn)閳A錐曲線的焦點(diǎn)在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:16、【解析】按題意求得,兩點(diǎn)坐標(biāo),以代數(shù)式表達(dá)出條件,即可得到關(guān)于的關(guān)系式,進(jìn)而解得雙曲線的離心率.【詳解】雙曲線的右焦點(diǎn)為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接與交于點(diǎn)O,易得平面,取的中點(diǎn)M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點(diǎn),分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分別求得平面的一個(gè)法向量,平面的一個(gè)法向量,由求解.【詳解】(1)如圖所示:連接與交于點(diǎn)O,因?yàn)闉檎叫?,故,又平面,故,由,故平面,取的中點(diǎn)M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標(biāo)原點(diǎn),分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,由(1)可知平面,因此平面的一個(gè)法向量為,而,由與平面所成角為,得,即,解得;則,設(shè)平面的一個(gè)法向量為,則得令,則,故設(shè)平面的一個(gè)法向量,則得令,則,,故所以,注意到二面角為鈍二面角,故二面角的余弦值為18、(1)眾數(shù)為0.82,8%分位數(shù)約為1.34(2)①;②【解析】(1)根據(jù)題中表格數(shù)據(jù)即可求得答案;(2)①兩條魚有可能均在A水池也可能都在B水池,故可根據(jù)互斥事件的概率結(jié)合相互獨(dú)立事件的概率計(jì)算求得答案;②先求出這兩條魚由同一個(gè)小孔進(jìn)入B水池的概率,然后根據(jù)對立事件的概率計(jì)算方法,求得答案.【小問1詳解】由題意知,數(shù)據(jù)的眾數(shù)為0.82,估計(jì)這批魚該項(xiàng)數(shù)據(jù)的80%分位數(shù)約為【小問2詳解】①記“兩魚最終均在A水池”為事件A,則,記“兩魚最終均在B水池”為事件B,則,∵事件A與事件B互斥,∴兩條魚最終在同一水池的概率為②記“兩魚同時(shí)從第一個(gè)小孔通過”為事件,“兩魚同時(shí)從第二個(gè)小孔通過”為事件,…依次類推,而兩魚的游動獨(dú)立,∴,記“兩條魚由不同小孔進(jìn)入B水池”為事件C,則C與對立,又由事件,事件,…,事件互斥,∴,即19、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)①1;②證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),在定義域內(nèi),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)①分離參數(shù)得,令,利用函數(shù)的單調(diào)性求出的最大值即可;②由①知:,時(shí)取“=”,令,即,最后累加即可.【小問1詳解】由已知條件得,其中的定義域?yàn)?,則,當(dāng)時(shí),,當(dāng)時(shí),,綜上所述可知:的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;【小問2詳解】①由恒成立,即恒成立,令,則,當(dāng)時(shí),,當(dāng)時(shí),,∴在上單調(diào)遞增,上單調(diào)遞減,∴,∴的最小值為1.②由①知:,時(shí)取“=”,令,得,∴,當(dāng)時(shí),.20、(1);(2)證明過程見解析.【解析】(1)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合對數(shù)的運(yùn)算性質(zhì)、等比數(shù)列和等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可;(2)根據(jù)等比數(shù)列的通項(xiàng)公式,結(jié)合雙曲線漸近線方程和離心率公式進(jìn)行證明即可.【小問1詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,所以,因此,所以,所以;【小?詳解】由(1)知,在雙曲線中,,所以得,因此雙曲線的漸近線方程為:,雙曲線的離心率為:,所以雙曲線系中所有雙曲線的漸近線、離心率都相同.21、(1)p為真時(shí)或,q為假時(shí);(2){或}.【解析】(1)p為真應(yīng)用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應(yīng)的參數(shù)范圍.(2)由題設(shè)易得p、q一真一假,討論p

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論