深圳羅湖區(qū)翠園中學七年級下冊數(shù)學期末試卷測試卷(解析版)_第1頁
深圳羅湖區(qū)翠園中學七年級下冊數(shù)學期末試卷測試卷(解析版)_第2頁
深圳羅湖區(qū)翠園中學七年級下冊數(shù)學期末試卷測試卷(解析版)_第3頁
深圳羅湖區(qū)翠園中學七年級下冊數(shù)學期末試卷測試卷(解析版)_第4頁
深圳羅湖區(qū)翠園中學七年級下冊數(shù)學期末試卷測試卷(解析版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

深圳羅湖區(qū)翠園中學七年級下冊數(shù)學期末試卷測試卷(解析版)一、解答題1.如圖1,點在直線、之間,且.(1)求證:;(2)若點是直線上的一點,且,平分交直線于點,若,求的度數(shù);(3)如圖3,點是直線、外一點,且滿足,,與交于點.已知,且,則的度數(shù)為______(請直接寫出答案,用含的式子表示).2.綜合與探究(問題情境)王老師組織同學們開展了探究三角之間數(shù)量關系的數(shù)學活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數(shù)量關系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當點在、(不與、重合)兩點之間運動時,設,.則,,之間有何數(shù)量關系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數(shù)量關系.3.閱讀下面材料:小亮同學遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側時,若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).4.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.5.已知AB∥CD,∠ABE與∠CDE的角分線相交于點F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請直接寫出∠M與∠BED之間的數(shù)量關系二、解答題6.已知,直角的邊與直線a分別相交于O、G兩點,與直線b分別交于E,F(xiàn)點,且.(1)將直角如圖1位置擺放,如果,則________;(2)將直角如圖2位置擺放,N為上一點,,請寫出與之間的等量關系,并說明理由;(3)將直角如圖3位置擺放,若,延長交直線b于點Q,點P是射線上一動點,探究與的數(shù)量關系,請直接寫出結論.7.將兩塊三角板按如圖置,其中三角板邊,,,.(1)下列結論:正確的是_______.①如果,則有;②;③如果,則平分.(2)如果,判斷與是否相等,請說明理由.(3)將三角板繞點順時針轉動,直到邊與重合即停止,轉動的過程中當兩塊三角板恰有兩邊平行時,請直接寫出所有可能的度數(shù).8.長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況,如圖,燈A射線自順時針旋轉至便立即回轉,燈B射線自順時針旋轉至便立即回轉,兩燈不停交叉照射巡視,若燈A轉動的速度是a°/秒,燈B轉動的速度是b°/秒,且a、b滿足.假定這一帶長江兩岸河堤是平行的,即,且(1)求a、b的值;(2)若燈B射線先轉動45秒,燈A射線才開始轉動,當燈B射線第一次到達時運動停止,問A燈轉動幾秒,兩燈的光束互相平行?(3)如圖,兩燈同時轉動,在燈A射線到達之前.若射出的光束交于點C,過C作交于點D,則在轉動過程中,與的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請求出其取值范圍.9.如圖1,為直線上一點,過點作射線,將一直角三角板()的直角頂點放在點處,一邊在射線上,另一邊與都在直線的上方,將圖1中的三角板繞點以每秒3°的速度沿順時針方向旋轉一周.(1)幾秒后與重合?(2)如圖2,經(jīng)過秒后,,求此時的值.(3)若三角板在轉動的同時,射線也繞點以每秒6°的速度沿順時針方向旋轉一周,那么經(jīng)過多長時間與重合?請畫圖并說明理由.(4)在(3)的條件下,求經(jīng)過多長時間平分?請畫圖并說明理由.10.如圖所示,已知,點P是射線AM上一動點(與點A不重合),BC、BD分別平分和,分別交射線AM于點C、D,且(1)求的度數(shù).(2)當點P運動時,與之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.(3)當點P運動到使時,求的度數(shù).三、解答題11.在中,射線平分交于點,點在邊上運動(不與點重合),過點作交于點.(1)如圖1,點在線段上運動時,平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關系?請說明理由;(2)點在線段上運動時,的角平分線所在直線與射線交于點.試探究與之間的數(shù)量關系,并說明理由.12.模型與應用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)13.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點D、E分別是邊AB、BC的中點,若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關系為.(2)如圖4,在△ABC中,點D、E分別在邊AB、AC上,連接BE、CD交于點O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.14.已知,,點為射線上一點.(1)如圖1,寫出、、之間的數(shù)量關系并證明;(2)如圖2,當點在延長線上時,求證:;(3)如圖3,平分,交于點,交于點,且:,,,求的度數(shù).15.已知,如圖1,直線l2⊥l1,垂足為A,點B在A點下方,點C在射線AM上,點B、C不與點A重合,點D在直線11上,點A的右側,過D作l3⊥l1,點E在直線l3上,點D的下方.(1)l2與l3的位置關系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點C在射線AM上運動,∠BDC的角平分線交EB的延長線于點N,在點C的運動過程中,探索∠N:∠BCD的值是否變化,若變化,請說明理由;若不變化,請直接寫出比值.【參考答案】一、解答題1.(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質,兩直線平行,內錯角相等,得出結合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD解析:(1)見解析;(2)10°;(3)【分析】(1)過點E作EF∥CD,根據(jù)平行線的性質,兩直線平行,內錯角相等,得出結合已知條件,得出即可證明;(2)過點E作HE∥CD,設由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質,得出再由平分,得出則,則可列出關于x和y的方程,即可求得x,即的度數(shù);(3)過點N作NP∥CD,過點M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因為,代入的式子即可求出.【詳解】(1)過點E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)過點E作HE∥CD,如圖,設由(1)得AB∥CD,則AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)過點N作NP∥CD,過點M作QM∥CD,如圖,由(1)得AB∥CD,則NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【點睛】本題考查平行線的性質,角平分線的定義,解決問題的關鍵是作平行線構造相等的角,利用兩直線平行,內錯角相等,同位角相等來計算和推導角之間的關系.2.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據(jù)題意,可對點P進行分類討論:當點在延長線時;當在之間時;與①同理,利用平行線的性質,即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質,解題的關鍵是熟練掌握兩直線平行同旁內角互補,兩直線平行內錯角相等,從而得到角的關系.3.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側時,根據(jù)∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側時,根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點E作EF∥AB,當點B在點A的右側時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補角的定義和平行線的性質解答;(2)①根據(jù)鄰補角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內角互補求出∠BCG,然后根據(jù)周角等于360°計算即可得到∠2;②結合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質,直角三角形的性質,讀懂題目信息并準確識圖是解題的關鍵.5.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結MF,利用平行線的性質可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結MF,利用平行線的性質可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結,,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個角的角平分線相交于點,,,,,,;(3)由(2)結論可得,,,則.【點睛】本題主要考查了平行線的性質和四邊形的內角和,關鍵在于掌握兩直線平行同位角相等,內錯角相等,同旁內角互補的性質.二、解答題6.(1)146°;(2)∠AOG+∠NEF=90°;(3)見解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線的性質求解.(2)作CP//a,由平行線的性質及等量代換得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)見解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線的性質求解.(2)作CP//a,由平行線的性質及等量代換得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分類討論點P在線段GF上或線段GF延長線上兩種情況,過點P作a,b的平行線求解.【詳解】解:(1)如圖,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如圖,作CP//a,則CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如圖,當點P在GF上時,作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如圖,當點P在GF延長線上時,作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【點睛】本題考查平行線的性質的應用,解題關鍵是熟練掌握平行線的性質,通過添加輔助線及分類討論的方法求解.7.(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質分別判定即可;(2)利用角的和差,結合∠CAB=∠DAE=90°進行判斷解析:(1)②③;(2)相等,理由見解析;(3)30°或45°或75°或120°或135°【分析】(1)根據(jù)平行線的判定和性質分別判定即可;(2)利用角的和差,結合∠CAB=∠DAE=90°進行判斷;(3)依據(jù)這兩塊三角尺各有一條邊互相平行,分五種情況討論,即可得到∠EAB角度所有可能的值.【詳解】解:(1)①∵∠BFD=60°,∠B=45°,∴∠BAD+∠D=∠BFD+∠B=105°,∴∠BAD=105°-30°=75°,∴∠BAD≠∠B,∴BC和AD不平行,故①錯誤;②∵∠BAC+∠DAE=180°,∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正確;③若BC∥AD,則∠BAD=∠B=45°,∴∠BAE=45°,即AB平分∠EAD,故③正確;故答案為:②③;(2)相等,理由是:∵∠CAD=150°,∴∠BAE=180°-150°=30°,∴∠BAD=60°,∵∠BAD+∠D=∠BFD+∠B,∴∠BFD=60°+30°-45°=45°=∠C;(3)若AC∥DE,則∠CAE=∠E=60°,∴∠EAB=90°-60°=30°;若BC∥AD,則∠B=∠BAD=45°,∴∠EAB=45°;若BC∥DE,則∠E=∠AFB=60°,∴∠EAB=180°-60°-45°=75°;若AB∥DE,則∠D=∠DAB=30°,∴∠EAB=30°+90°=120°;若AE∥BC,則∠C=∠CAE=45°,∴∠EAB=45°+90°=135°;綜上:∠EAB的度數(shù)可能為30°或45°或75°或120°或135°.【點睛】本題考查了平行線的判定和性質,角平分線的定義,解題的關鍵是理解題意,分情況畫出圖形,學會用分類討論的思想思考問題.8.(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負數(shù)的性質解決問題即可.(2)分三種情形,利用平行線的性質構建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解析:(1),;(2)15秒或63秒;(3)不發(fā)生變化,【分析】(1)利用非負數(shù)的性質解決問題即可.(2)分三種情形,利用平行線的性質構建方程即可解決問題.(3)由參數(shù)表示,即可判斷.【詳解】解:(1)∵,∴,,;(2)設燈轉動秒,兩燈的光束互相平行,①當時,,解得;②當時,,解得;③當時,,解得,(不合題意)綜上所述,當t=15秒或63秒時,兩燈的光束互相平行;(3)設燈轉動時間為秒,,,又,,而,,,即.【點睛】本題考查平行線的性質和判定,非負數(shù)的性質等知識,解題的關鍵是理解題意,學會利用參數(shù)構建方程解決問題,屬于中考??碱}型.9.(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉動速度即可得;(2)求出∠AON=60°,結合旋轉速度可得時間t;(3)設∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數(shù)除以轉動速度即可得;(2)求出∠AON=60°,結合旋轉速度可得時間t;(3)設∠AON=3t,則∠AOC=30°+6t,由題意列出方程,解方程即可;(4)根據(jù)轉動速度關系和OC平分∠MOB,由題意列出方程,解方程即可.【詳解】解:(1)∵30÷3=10,∴10秒后ON與OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴經(jīng)過t秒后,MN∥AB,t=20秒.(3)如圖3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,設∠AON=3t,則∠AOC=30°+6t,∵OC與OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即經(jīng)過20秒時間OC與OM重合;(4)如圖4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,設∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°-3t),由題意得:180°-(30°+6t)=(90°-3t),解得:t=秒,即經(jīng)過秒OC平分∠MOB.【點睛】此題考查了平行線的判定與性質,角的計算以及方程的應用,關鍵是應該認真審題并仔細觀察圖形,找到各個量之間的關系求出角的度數(shù)是解題的關鍵.10.(1);(2)不變化,,理由見解析;(3)【分析】(1)結合題意,根據(jù)角平分線的性質,得;再根據(jù)平行線的性質計算,即可得到答案;(2)根據(jù)平行線的性質,得,;結合角平分線性質,得,即可完成求解解析:(1);(2)不變化,,理由見解析;(3)【分析】(1)結合題意,根據(jù)角平分線的性質,得;再根據(jù)平行線的性質計算,即可得到答案;(2)根據(jù)平行線的性質,得,;結合角平分線性質,得,即可完成求解;(3)根據(jù)平行線的性質,得;結合,推導得;再結合(1)的結論計算,即可得到答案.【詳解】(1)∵BC,BD分別評分和,∴,∴又∵,∴∵,∴∴;(2)∵,∴,又∵BD平分∴,∴;∴與之間的數(shù)量關系保持不變;(3)∵,∴又∵,∴,∵∴由(1)可得,∴.【點睛】本題考查了角平分線、平行線的知識;解題的關鍵是熟練掌握角平分線、平行線的性質,從而完成求解.三、解答題11.(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點睛】本題考查了角平分線的定義、平行線的性質、三角形的內角和定理及三角形外角的性質,根據(jù)角平分線的定義、平行線的性質、三角形的內角和定理及三角形外角的性質確定各角之間的關系是解決問題的關鍵.12.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質,角平分線的定義,解決此類題目,過拐點作平行線是解題的關鍵,準確識圖理清圖中各角度之間的關系也很重要.13.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結論.試題解析:解:解決問題連接AE.∵點D、E分別是邊AB、BC的中點,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.14.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設CD與AE交于點H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內錯角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設CD與AE交于點H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進而得到∠EAF=∠AED+∠EDG;(3)設∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論