版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
LaborMarketExposuretoAI:Cross-country
Differencesand
DistributionalImplications
CarloPizzinelli,AugustusPanton,MarinaM.Tavares,MauroCazzaniga,LongjiLi
WP/23/216
IMFWorkingPapersdescriberesearchin
progressbytheauthor(s)andarepublishedto
elicitcommentsandtoencouragedebate.
TheviewsexpressedinIMFWorkingPapersare
thoseoftheauthor(s)anddonotnecessarily
representtheviewsoftheIMF,itsExecutiveBoard,
orIMFmanagement.
NAr
2023
ARY
OCT
*TheauthorswouldliketothankFlorenceJaumotte,GiovanniMelina,andEmmaRockallforhelpfulcomments.
?2023InternationalMonetaryFund
WP/23/216
IMFWorkingPaper
ResearchDepartment
LaborMarketExposuretoAI:Cross-countryDifferencesandDistributionalImplications
PreparedbyCarloPizzinelli,AugustusPanton,MarinaM.Tavares,MauroCazzaniga,LongjiLi
AuthorizedfordistributionbyFlorenceJaumotte
October2023
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicit
commentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseofthe
author(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:ThispaperexaminestheimpactofArtificialIntelligence(AI)onlabormarketsinbothAdvancedEconomies(AEs)andEmergingMarkets(EMs).WeproposeanextensiontoastandardmeasureofAI
exposure,accountingforAI'spotentialaseitheracomplementorasubstituteforlabor,wherecomplementarityreflectslowerrisksofjobdisplacement.Weanalyzeworker-levelmicrodatafrom2AEs(USandUK)and4
EMs(Brazil,Colombia,India,andSouthAfrica),revealingsubstantialvariationsinunadjustedAIexposure
acrosscountries.AEsfacehigherexposurethanEMsduetoahigheremploymentshareinprofessionalandmanagerialoccupations.However,whenaccountingforpotentialcomplementarity,differencesinexposure
acrosscountriesaremoremuted.Withincountries,commonpatternsemergeinAEsandEMs.Womenand
highlyeducatedworkersfacegreateroccupationalexposuretoAI,atbothhighandlowcomplementarity.
Workersintheuppertailoftheearningsdistributionaremorelikelytobeinoccupationswithhighexposurebutalsohighpotentialcomplementarity.
RECOMMENDEDCITATION:Pizzinelli,C.,A.Panton,M.M.Tavares,M.Cazzaniga,andL.Li,(2023)“Labor
MarketExposuretoAI:Cross-countryDifferencesandDistributionalImplication.”IMFWokringPaper23/216
JELClassificationNumbers:
J23,O33
Keywords:
Artificialintelligence;Employment;Occupations;EmergingMarkets
Author’sE-MailAddress:
cpizzinelli@,apanton@,mmendestavares@,mauro98cazzaniga@,lli4@,
LaborMarketExposuretoAI:Cross-country
DifferencesandDistributionalImplications
CarloPizzinelli*
IMF
AugustusPanton
IMF
MarinaM.Tavares*
IMF
MauroCazzanigaLongjiLi
FGV-SPIMF
September22,2023
Abstract
ThispaperexaminestheimpactofArtificialIntelligence(AI)onlabormarketsinbothAdvancedEconomies(AEs)andEmergingMarkets(EMs).WeproposeanextensiontoastandardmeasureofAIexposure,accountingforAI’spotentialaseitheracom-plementorasubstituteforlabor,wherecomplementarityreflectslowerrisksofjobdisplacement.Weanalyzeworker-levelmicrodatafrom2AEs(USandUK)and4EMs(Brazil,Colombia,India,andSouthAfrica),revealingsubstantialvariationinunadjustedAIexposureacrosscountries.AEsfacehigherexposurethanEMsduetoahigheremploymentshareinprofessionalandmanagerialoccupations.However,whenaccountingforpotentialcomplementarity,differencesinexposureacrosscountriesaremoremuted.Withincountries,commonpatternsemergeinAEsandEMs.WomenandhighlyeducatedworkersfacegreateroccupationalexposuretoAI,atbothhighandlowcomplementarity.Workersintheuppertailoftheearningsdistributionaremorelikelytobeinoccupationswithhighexposurebutalsohighpotentialcomple-mentarity.
Keywords:Artificialintelligence,Employment,Occupations,EmergingMarketsJELCodes:J23,J23,O33
*Correspondingauthors:CarloPizzinelliandMarinaM.Tavares,InternationalMonetaryFund,70019thSt.NW,Washington,DC,20431,USA.Email:
cpizzinelli@
mmendestavares@
1TheauthorswouldliketothankFlorenceJaumotte,GiovanniMelina,AlexanderCopestake,andEmmaRockallforhelpfulcomments.Disclaimer:TheviewsexpressedinthisstudyarethesoleresponsibilityoftheauthorsandshouldnotbeattributabletotheInternationalMonetaryFund,itsExecutiveBoard,oritsmanagement.
1
1Introduction
TherapiddevelopmentofArtificialIntelligence(AI)hassparkedconsiderablediscus-
sionregardingitsimpactonlabormarkets.1
Byautomatingtasks,personalizingexperiences,andimprovingqualitycontrol,AIcoulddramaticallyenhanceproductivityacrossvarioussectors,presentinganunprecedentedrevolutionintheworkplace.Despitethispromisingoutlook,theswiftprogressofAI,coupledwithcontinuedR&D,createssubstantialuncer-
taintysurroundingitssocioeconomicimplications(LaneandSaint-Martin,
2021;
Agrawal
etal.
,
2018).EconomistslargelyagreethatAIcouldbolstersocietalwealthinthelongrun,
yetconcernspersistoveritspotentialtodisruptemploymentinmanyindustries.
Inthisfast-evolvinglandscape,threesignificantareasofuncertaintystandout.First,itremainsunclearhowAItechnologiesmightserveaseithersubstitutesorcomplementsforhumanlaborinspecifictasksandoccupations,ultimatelyleadingto“winnersandlosers”in
thejobmarket(Autor,
2022).Second,thereisinterestinunderstandinghowexposuretoAI
variesacrosscountries,andinparticularwhethertherearesystematicdifferencesbetweenAdvancedEconomies(AEs)andEmergingMarkets(EMs).Third,withincountries,exposuretotherisksandbenefitsofAIislikelytodifferacrossdemographicgroupsandskilllevels,makingimplicationsforeconomicdisparitiesdifficulttopredict.
Inthispaper,weofferpreliminaryinsightsintothesequestions.First,weproposeanadjustmenttoastandardmeasureofAIoccupationalexposure(AIOE)tocaptureAI’spotentialtocomplementorsubstituteforlaborineachoccupation.Second,weapplyboththeoriginalmeasureandthecomplementarity-adjustedonetolaborforcemicrodatafromsixcountries,withaparticularemphasisonEMs.OuranalysisshedslightondifferencesinexposuretoAIacrosscountries,disentanglingthosewithgreaterpotentialtobenefitfromcomplementarityandthoseatgreaterriskfromsubstitution.Finally,withineachcountry,weexaminehowexposurevariesacrossdemographicgroups,skilllevels,andtheincomedistribution.
Recentresearchhasfocusedon“exposure”toAIacrossthespectrumofoccupations.TheproposeddefinitionsofexposureconsiderhowAIapplicationsoverlapwiththehuman
1IthasbeenarguedthatAIfulfillsthedefinitionofaGeneral-PurposeTechnology(GPT)andthereforeholdsthepotentialtospurasustainedwaveofeconomicgrowthandinnovation.
Lipseyetal.
(2005)define
aGPTasatechnologythat(i)iswidelyused,(ii)hasthepotentialforcontinuousinnovation,(iii)generatescomplementaryinnovations.ExamplesofGPTsarethesteamengine,electricity,andtheinternet.Scholars
generallyagreethatAI,asasuiteoftechnologies,isaGPT(Agrawaletal.,
2018)andpotentiallysome
ofitsindividualsub-fields,suchasGenerativeAIandMachineLearning,individuallyfulfillthedefinition
(Goldfarbetal.,
2023)
.
2
abilitiesneededtoperformagivenoccupation(asintheAIOEindexof
Feltenetal.,
2021,
2023)orcouldsignificantlyacceleratetheperformanceoftasksineachjob(Eloundouetal.,
2023
;
BriggsandKodnani,
2023).Sodefined,thisconceptpurposelyremainsagnostictothe
potentialforAItoserveaseitherasubstituteorcomplementforhumanlaborinkeytasksandpossiblytoreplaceanoccupationaltogether.Giventhelargedegreeofuncertaintyregardingfutureinnovationsandtheirapplicationtospecificproductiveprocesses,precisepredictionsarechallengingandrequiresignificantcaveats.Nevertheless,itisimportantforacademicsandpolicymakerstoconsidertheconsequencesofAI’sinteractionswitheachoccupation.Forinstance,workersinoccupationsmorevulnerabletosubstitutionbyAIwillbemorelikelytoexperienceadverseincomeshockswhilethoseincomplementedoccupationscouldexperiencehigherreturnstotheirlabor.SuchexercisewouldallowforaninformeddiscussionofhowAImayposegreaterrisksofadverselabormarketoutcomesforsomeworkersandgreateropportunitiesforothers,drawingaggregateimplicationsforitseconomy-wideimpact.
ThispaperthuscontributestothedebateonhowAImayimpactthelabormarketbyproposinganextensiontothewidelyusedAIOccupationalExposure(AIOE)measureby
Feltenetal.
(2021)toaccountforpotentialcomplementarity.
Tothisaim,wefirstbuildanindexofpotentialforAIcomplementarityattheoccupationlevelbasedonthesamedatasourceusedbytheseauthors,theOccupationalInformationNetwork(O*NET)repository.Specifically,wedrawontwoareasofO*NET:workcontextsandoccupations’“jobzones”.Theformercapture“physicalandsocialfactorsthatinfluencethenatureofwork”,andhenceareinformativeofthelikelihoodthatkeyactivitiesofanoccupationwouldbeassignedtoAIwithouthumansupervision-thatis,asasubstitutetolabor.Forinstance,societyispresumablylesslikelytofullydelegatetoAIincontextsinwhichtherearegraveconsequencestoerrors,likepilotinganairplaneordiagnosingdiseases.Meanwhile,jobzonesreflecttheamountofeducationandtrainingrequiredtoperformanoccupation.LongertrainingmayentailgreaterabilitytointegratetheknowledgeneededtooperateAIintotheskillsetofanoccupation,translatingintogreaterpotentialtousethetechnologytosupporthumantasks.
Equippedwiththisindex,wethenconstructacomplementarity-adjustedAIoccu-pationalexposure(C-AIOE)measure,wheretheexposureofoccupationsismitigatedbytheirpotentialforcomplementarity.Inthisalternativemeasure,ahighervalueofexposuremorecloselycorrespondstogreaterriskofsubstitutionandhenceofanadverselabormarketeffectfromAI.Wefindthatsomehigh-skilloccupationalgroupswithhighexposuretoAI,suchasprofessionalsandmanagers,alsoholdthehighestpotentialforcomplementarityandthushavelowC-AIOEvalues.Meanwhile,clericalsupportoccupationsarehighlyexposed
3
buthaveonaveragelowcomplementarity,thereforescoringhighestintheC-AIOEmeasure.
AsecondquestionconcernsthemagnitudeofdisparitiesinAIexposureacrosscoun-triesandwhether,withineachcountry,similarpatternsemergeinhowexposureisdistributedacrossthelaborforce.MostoftheanalysisofexposuresofarhasfocusedonAdvancedEconomies(AEs),withonlylimiteddiscussionofEmergingMarkets(EMs).Thislattergroupofcountries,encompassingawiderangeofdiverseeconomicrealities,ischaracterizedbydistinctlabormarketcompositionswithrespecttooccupationsandworkerdemographics.LabormarketexposuretoAIinEMs,anditsdifferenceswithAEs,hencedeserveadeeperdiscussion.
Thesecondcontributionofthispaperisthustoprovideadetailedcross-countryanalysisofAIexposureusingworker-levelmicrodatafromsixeconomies:twoadvancedeconomies(UKandUS)andfourEMs(Brazil,Colombia,India,SouthAfrica).WecombinemicrodatafromrecentlaborforcesurveyswiththeAIOEandC-AIOEmeasuresataverygranularoccupationallevel(morethan400ISCO-08codes)topaintadetailedpictureofAIexposurebothacrosscountriesandwithineachcountry.Theuseofmicrodataalsoallowsforadeeperanalysisofheterogeneitythroughoutthelabormarketofindividualcountries,basedondemographicgroupsandalongtheincomedistribution,uncoveringsimilaritiesanddifferencesinexposurepatternsinAEsandEMs.
Themainfindingscanbesummarizedasfollows.Therearesubstantialcross-countrydisparitiesinthebaselineAIOE,withEMsgenerallyexhibitinglowerexposurelevelsthanAEs.Thisvariationprimarilyhingesondifferentemploymentcompositions,withAEschar-acterizedbylargerproportionsofhigh-skilloccupationssuchasprofessionalsandmanagers.Inlinewiththefindingsofpreviousstudies,theseprofessionsarethemostexposedtoAI
duetotheirhighconcentrationofcognitive-basedtasks(Feltenetal.,
2021,
2023;
Briggs
andKodnani
,
2023;
Eloundouetal.,
2023)
.However,becausethosehigh-skilloccupationsalsoshowhigherpotentialforAIcomplementarity,thesecross-countrydisparitiesintermsofpotentiallydisruptiveexposurediminishsignificantlyoncecomplementarityisfactoredin.Nevertheless,AEsremainmoreexposedevenundertheC-AIOEmeasure.Meanwhile,EMswithalargeshareofagriculturalemployment,likeIndia,remainrelativelylessexposedunderbothmeasures,asoccupationsinthissectorhaveverylowbaselineexposuretoAI.Overall,theresultssuggestthattheimpactofAIonlabormarketsinAEsmaybemore“polarized,”astheiremploymentstructurebetterpositionsthemtobenefitfromgrowthopportunitiesbutalsomakesthemmorevulnerabletolikelyjobdisplacements.
4
Ouranalysisuncoverswithin-countrydisparitiesinAIexposure,bothadjustedandunadjusted,acrossdemographicvariablessuchasgender,education,andage,amongbothEMsandAEs.Thesepatternsexhibitnotableparallelsacrosscountries.WomenaremoreexposedtoAIthanmeninalmostallcountriesinoursample,primarilyduetotheirpre-dominantemploymentinmiddle-skillserviceandretailoccupations,whichbeararelativelyhigherexposurethanmanuallaborroles.TheonlyexceptionisIndia,wherewomenhavelowerexposurethanmenduetotheirsubstantialemploymentinagriculture.Intermsofeducationalattainment,inbothAEsandEMsworkerswithatleastacollegedegreearemoreexposedthanthosewithlowereducationalcredentials.However,theformeralsocarryagreaterpotentialtobenefitfromAIduetotheirconcentrationinprofessionalandman-agerialjobs.Nocommonresultsemergewithrespecttoage,mostlikelyduetocomplexinteractionswithcountry-specificseculartrendsineducationalattainmentandfemalelaborforceparticipation.
Withrespecttoexposureacrossthedistributionofearnings,asignificantfindingemerges.High-incomeworkersaremoreexposedtoAI.However,consistentwiththeirgener-allyhighereducationalattainment,thisdifferenceismostlyaccountedforbyemploymentinoccupationswithhighpotentialcomplementarity.Meanwhile,employmentinhigh-exposurebutlow-complementarityjobsisevenlydistributedacrossthedistribution.Thisresultsug-geststhatwhilethepotentialadverseimpactmaybemoreevenlyspreadacrosstheincomedistribution,thebenefitsarepredominantlyconcentratedatthetop.
OurpaperrelatestothegrowingnumberofworksontheimpactofAIonlabormarkets.Themajorityofempiricalstudiesfocusindetailonvariationinexposureexclusively
intheUS(Feltenetal.,
2021,
2023;
Eloundouetal.,
2023;
Webb,
2020).2
OECD
(2023),
Albanesietal.
(2023),
BriggsandKodnani
(2023),
Gmyreketal.
(2023)provideacross
-
countryperspective,butonlythelattertwoconsiderexposureinEMs.3
BriggsandKodnani
(2023)conductabroadsectoralanalysisextrapolatingfromcoarseindustry-levelmeasures
ofexposureconstructedfortheUS.
Gmyreketal.
(2023)havealargecoverageofEMs
andlow-incomeeconomiesattheoccupationallevelwithvaryingdegreesofgranularity.Usingmicrodata,ourworkinsteadconductsagranularcomparisonofEMsandAEsbothattheaggregatelevelandwithincountries.WethusdelvedeeperintopatternsofAIexposureacrossdemographicgroupsandtheincomedistribution,providingamorerefined
2Brynjolfssonetal.
(2018)study“automation”oftasksbutfocusonMachineLearning,whichisan
importantbutsmallsubsetAI.
3Copestakeetal.
(2023)areanexampleofanempiricalstudyoftheearlyimpactofAIonasingleEM
economy.
5
identificationofpotential“winners”and“l(fā)osers”inEMs.
Severalstudieshavemademethodologicalcontributionsbydevelopingmeasuresof
occupation-levelexposuretoAI(Feltenetal.,
2023;
Eloundouetal.,
2023;
Webb,
2020;
BriggsandKodnani,
2023)
.ThroughtheO*NETrepository,theseworksconstructmea-suresofexposurethataregenerallyagnosticregardingthelikelihoodofAIcomplementingorsubstitutingforhumanlaborinagiventask,activity,oroccupation.Followingthelong-standingliteratureonroutine-biasedautomation,recentworksmakingadistinctionbetween
complementarityandsubstitutionhaveadoptedatask-basedframework(AcemogluandRe-
strepo
,
2018,
2022;
Autoretal.,
2022;
Gmyreketal.,
2023).Despiteitsrigorousconceptual
-izationoftheinteractionsbetweenhumanandmachineabilities,asacknowledgedby
Autor
(2022),thetaskmodelalsohassomelimitationswhenappliedtoAI.First,asthetechnology
continuestodevelop,itisdifficulttosaywhattasksAIcanandcannotperformfullyunsu-pervised.Second,thisapproachholdsanarrowviewonthefactorsdeterminingwhichjobsareexposedtoreplacementfromAI.RecentstudiesfromtheOECD,basedonsurveysofworkersandfirms,clearlyshowtherichvarietyofconcernsandindividualexperiencesinAI
adoption(Laneetal.,
2023;
Milanez,
2023).Ourcontributionisthustoconstructameasure
ofcomplementaritytoAIbyexaminingabroadsetoffactorsbeyondtasks,relatedtothesocialandphysicalcontextinwhichworkisperformed.Wethusprovideamorenuancedviewofwhichoccupationsandworkersfacethegreatestrisksandopportunitiesintheyearsahead.
Ourmethodologynaturallycarriescaveats.First,theselectionofcontextsfromO*NETreliesonourownjudgementofwhichfactorsmatterfortheinteractionbetweenAIandworkers.However,wepresentasetofteststoshowthatthesecontextsarenotallsystematicallyrelatedtoeachotherandthusofferamultifacetedtakeonpotentialcomple-mentarity,factoringinapluralityofangles.WealsotesttherobustnessoftheC-AIOEtodifferentspecificationsoftheadjustment.Furthermore,weacknowledgethattheimportanceofcomplementarityreliesonsocietalviewsandonotherinnovationstosupportAI.AsAItechnologyimprovesinprecisionandgarnersincreasedtrust,thelikelihoodofitsupplantinghumantasks–eveninoccupationscharacterizedbyhighlevelsofresponsibility,criticality,andskills–maygrow.Consequently,theapplicabilityoftheconceptproposedinthispapercoulddecreaseovertime.Toillustratethispoint,wediscussanexerciseinwhichtheweightgiventocomplementarityintheadjustmentcanbealtered.
Beforeconcludingwealsomakefurtherconsiderationsontheinterpretationoftheresultsandthescopeforfutureanalysis.Forinstance,ourproposedadjustmenttotheAIOE
6
measuredoesnotimplythatworkersinexposedoccupationswithhighcomplementaritydonotfaceanyriskofdisplacement.ComplementaritycanonlybeleveragedifindividualworkerspossesstheskillsneededtotakeadvantageofAIasasupportingtechnology.Withoutsuchabilities,workersinthoseoccupationswouldstillfacereducedemploymentprospectseveniftheoccupationasawholemayexperiencerisingdemand.Moreover,ourapproachonlymeasurescross-countrydifferencesbasedonoccupationalcomposition,abstractingfrommacro-factorssuchastheavailabilityofinfrastructureneededtoimplementAIandthepotentialdifferenceinthetaskcompositionofoccupationsacrosscountries.
Theremainderofthepaperisstructuredasfollows.Section
2
introducestheconceptofcomplementarityandproposesapotentialcomplementarity-adjustedexposuremeasure.Section
3
describesthecountry-specificdatasourcesusedfortheanalysis.Sections
4-5
presentthemainfindingsandthesensitivityanalysis.Section
6
providesfurtherdiscussionoftheresults.Finally,Section
7
concludes.
2AIExposureandAdjustingforPotentialComple-
mentarity
Inthissection,wediscusstheimportanceofaddingthepotentialforcomplementarityorsubstitutabilityasadimensionforunderstandinghowAIexposureattheoccupationallevelcanposebothrisksandopportunities.
2.1Motivation
RecentanalyseshavefocusedtheirattentiononAIexposure.Whileitsprecisedefinitionvariesacrossstudies,exposurereflectsthepotentialforAItobeintegratedintoeachoccupationbasedthetasksandskillsthatcharacterizeeachjob.Giventhehighdegreeofuncertaintyoverthefutureofthisfast-pacingandbroadlyapplicabletechnology,theconceptofexposureispurposelyframedasagnosticonthelikelihoodofAIcomplementingorreplacinglaborintheperformanceofagiventaskoroccupation.Forinstance,theAIOEindexby
Feltenetal.
(2021)measuresthedegreeofoverlapbetweenmainAIapplications
andtheabilitiesneededtoperformanoccupationeffectively.4
4InthecontextofGenerativeAI,
Eloundouetal.
(2023)defineexposure“asameasureofwhether
accessto[LargeLanguageModels]wouldreducethetimerequiredforahumantoperformaspecific[workactivity]orcompleteataskbyatleast50percent.”Meanwhile
Webb
(2020)measuresexposurethroughthe
degreeofsimilaritybetweenthedescribedapplicationsofAIpatentsandthetasksdefininganoccupation.Finally,
BriggsandKodnani
(2023)manuallyidentifyworkactivitiesexposedtoAIandwhether,withinan
7
GivenAI’spotentialtoperformhighlycomplexfunctions,understandinghowitcouldaugmentworkersorreducethedemandfortheirlaborisofgreatimportanceforpolicymakersandresearchersalike.Whilesomestudiesdifferentiatebetweensubstitutionandcomplementarity,theybuildthisdistinctiononatask-basedframework.Forinstance,
Gmyreketal.
(2023)definesoccupationsashavinghigh“automation”or“augmentation”po
-tentialbasedonthedistributionoftheAI-automationscoresoftheindividualtasksdefining
eachoccupation.5
Althoughthisapproachhasmerits,itholdsanarrowfocusincategorizingtheinteractionofhumanworkwithatechnologythatwilllikelyhavecomplexrepercussionsinotherrealms.
Ourproposedframeworkthusconceivescomplementarityasdrivenbyasetoffac-tors–social,legal,technical–thatareindependentofexposureitself.ThisdistinctionisconceptuallyillustratedinFigure
1.Workersinoccupationshighlyexposed,butwhereAI
hasthepotentialtoturnintoasupportingtechnology(upperrightquadrant)aremorelikelytoexperienceproductivitygains,conditionalonaccesstothenecessaryinfrastructureandtheappropriateskillstoengagewiththetechnology.Ontheotherhand,workersinhighlyexposedoccupationswithlowerpotentialforcomplementarity,andthusahigherriskofsub-stitution(lowerrightquadrant),mayexperiencealong-lastingfallindemandfortheirlaboralongthelinesofthenegativeshockinflictedbythepastwaveofroutine-biasedautomation,
withreducedemploymentopportunitiesandlowerearnings(AutorandDorn,
2013)
.
AtlowerlevelsofAIexposure(leftquadrants),ahighercomplementaritypotentialmaystillaffecthowAIisintegratedintoeachoccupationbut,giventhelowerscopeforinteractionwithhumanskillsandtasks,itwouldlikelybelessinfluentialforlabordemand.Inthissense,theimportanceofpotentialcomplementarityisconditionalonagivenexposurelevel.
Itisalsoworthnotingthat,whilelowercomplementarityreflectsariskoflowerlabordemandforworkersinagivenoccupation,highercomplementaritydoesnotinitselfsignifynorisksforindividualworkers.ThoseemployedinahighlycomplementaryoccupationwhodonotpossesstheskillsneededtoengagewithAIwouldlikelyfaceloweremploymentopportunitiesandwages.
occupation,suchactivitiesareofalow-enoughlevelofcomplexitythatAIcouldcompletethem.Arguably,thislastmethodologyimpliesaviewonexposurethatisclosertolaborsubstitution.
5Moreprecisely,occupationswherethemeantask-levelautomatabilityscoreishighandthestandarddeviationislowaredefinedasautomatable.Occupationswithalowmeanscoreandhighstandarddeviationaredefinedasaugmentable.
8
Withthesecaveatsinmind,weproposeasimpleadjustmentofAIexposuremeasurestoaccountforcomplementarity.Inwhatfollows,weusetheAIOEindexby
Feltenetal.
(2021)asthebaselinemeasuretoaugmentintoacomplementarity-adjustedAIOE(C-AIOE)
.However,thesameapproachcouldbeappliedtoanymeasurethatdoesnotalreadycapturecomplementarity.
Foragivenoccupationi,letθibeameasureofpotentialcomplementarityofAI.Thebaselineexposurecanbeadjustedasfollows:
C-AIOEi=AIOEi*(1?(θi?θMIN),,(1)
whereθMINistheminimumvalueofθiacrossalloccupations.WeadjustforθMINtoallowthecomplementariymeasuretohavearelativeinterpretationastheoriginalAIOEindex.Thesecondtermontheright-handsidethusrepresentsadownwardadjustmentofAIOErelativetotheoccupationwiththelowestpotentialcomplementarity(θMIN),forwhichtheAIOEandC-AIOEmeasuresconicide.HenceahighervalueoftheC-AIOEindeximpliesagreaterriskofreplacementattheoccupationlevel.
Figure1:AIexposureandComplementarityDiagram
Complementarity
人
LowExposureHighExposure
HighComplementarityHighComplementarity
Exposure
HighExposure
LowComplementarity
LowExposure
LowComplementarity
ItshouldbenotedthattheoriginalAIOEindexby
Feltenetal.
(2021)isameasure
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年專業(yè)高級(jí)顧問聘任協(xié)議范例版B版
- 2025年江西貨運(yùn)從業(yè)資格試題答案大全
- 建筑工程鋁扣板施工合同
- 智能城市交通網(wǎng)絡(luò)部署合同
- 會(huì)計(jì)師事務(wù)所公關(guān)部聘用合同
- 2025年正規(guī)商品代銷合同書范文
- 港口物流船運(yùn)租賃合同
- 食品公司品控員招聘合同模板
- 河北省張家口市2024屆高三上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 圖書館建設(shè)拆遷施工合同
- 數(shù)據(jù)可視化技術(shù)智慧樹知到期末考試答案2024年
- MOOC 警察禮儀-江蘇警官學(xué)院 中國(guó)大學(xué)慕課答案
- 三基考試題庫與答案
- 2024年廣東省2024屆高三二模英語試卷(含標(biāo)準(zhǔn)答案)
- 全飛秒激光近視手術(shù)
- 2024年制鞋工專業(yè)知識(shí)考試(重點(diǎn))題庫(含答案)
- 2023-2024學(xué)年廣州大附屬中學(xué)中考一模物理試題含解析
- 綠化養(yǎng)護(hù)工作日記錄表
- 2024美的在線測(cè)評(píng)題庫答案
- 2024版高考數(shù)學(xué)二輪復(fù)習(xí):解析幾何問題的方法技巧
- 輿情監(jiān)測(cè)服務(wù)方案
評(píng)論
0/150
提交評(píng)論