人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第28講 直線與直線平行(含解析)_第1頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第28講 直線與直線平行(含解析)_第2頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第28講 直線與直線平行(含解析)_第3頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第28講 直線與直線平行(含解析)_第4頁(yè)
人教A版高中數(shù)學(xué)必修第二冊(cè)同步講義第28講 直線與直線平行(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第28課直線與直線平行目標(biāo)導(dǎo)航目標(biāo)導(dǎo)航課程標(biāo)準(zhǔn)課標(biāo)解讀1.會(huì)判斷空間兩直線的位置關(guān)系.2.能用基本事實(shí)4和等角定理解決一些簡(jiǎn)單的相關(guān)問(wèn)題..1.本節(jié)內(nèi)容包含一個(gè)基本事實(shí)、一個(gè)定理,是對(duì)學(xué)生原有的平面知識(shí)結(jié)構(gòu)基礎(chǔ)的拓展,同時(shí)也是后面研究空間直線與平面平行、平面與平面平行的基礎(chǔ),它在知識(shí)結(jié)構(gòu)上起著承上啟下的作用.教材以長(zhǎng)方體為載體,讓學(xué)生直觀認(rèn)識(shí)空間中直線與直線的位置關(guān)系,通過(guò)觀察得出基本事實(shí)4.基本事實(shí)4表明了平行線的傳遞性,可以作為判斷空間兩條直線平行的依據(jù),同時(shí)它給出了空間兩條直線平行的一種證法2.通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),為學(xué)生學(xué)習(xí)立體幾何知識(shí)打下基礎(chǔ),同時(shí)能更好地提升學(xué)生直觀想象和羅輯推理等數(shù)學(xué)學(xué)科核心素養(yǎng).知識(shí)精講知識(shí)精講知識(shí)點(diǎn)01基本事實(shí)4文字語(yǔ)言平行于同一條直線的兩條直線平行圖形語(yǔ)言符號(hào)語(yǔ)言直線a,b,c,a∥b,b∥c?a∥c作用證明兩條直線平行說(shuō)明基本事實(shí)4表述的性質(zhì)通常叫做平行線的傳遞性【即學(xué)即練1】如圖所示,在三棱錐S-MNP中,E,F(xiàn),G,H分別是棱SN,SP,MN,MP的中點(diǎn),則EF與HG的位置關(guān)系是()A.平行 B.相交C.異面 D.平行或異面答案A解析在△MPN中,H,G分別為MP,MN的中點(diǎn),∴GH∥PN,同理EF∥PN,∴GH∥EF.知識(shí)點(diǎn)02空間等角定理1.定理文字語(yǔ)言如果空間中兩個(gè)角的兩條邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)符號(hào)語(yǔ)言O(shè)A∥O′A′,OB∥O′B′?∠AOB=∠A′O′B′或∠AOB+∠A′O′B′=180°圖形語(yǔ)言作用判斷或證明兩個(gè)角相等或互補(bǔ)2.推廣如果兩條相交直線與另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等.反思感悟等角定理的結(jié)論是兩個(gè)角相等或互補(bǔ),在實(shí)際應(yīng)用時(shí)一般是借助于圖形判斷是相等還是互補(bǔ),還是兩種情況都有可能.【即學(xué)即練2】如圖所示,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別是AB,BB1,BC的中點(diǎn),求證:△EFG∽△C1DA1.證明如圖所示,連接B1C.因?yàn)镚,F(xiàn)分別為BC,BB1的中點(diǎn),所以GF∥B1C.又ABCD-A1B1C1D1為正方體,所以CD綊AB,A1B1綊AB,由基本事實(shí)4知CD綊A1B1,所以四邊形A1B1CD為平行四邊形,所以A1D綊B1C.又B1C∥FG,由基本事實(shí)4知A1D∥FG.同理可證A1C1∥EG,DC1∥EF.又∠DA1C1與∠EGF,∠A1DC1與∠EFG,∠DC1A1與∠GEF的兩條邊分別對(duì)應(yīng)平行且均為銳角,所以∠DA1C1=∠EGF,∠A1DC1=∠EFG,∠DC1A1=∠GEF.所以△EFG∽△C1DA1.能力拓展能力拓展考法01基本事實(shí)4的應(yīng)用【典例1】如圖所示,在空間四邊形ABCD(不共面的四邊形稱為空間四邊形)中,E,F(xiàn),G,H分別為AB,BC,CD,DA的中點(diǎn).求證:四邊形EFGH是平行四邊形.證明因?yàn)樵诳臻g四邊形ABCD中,E,F(xiàn),G,H分別為AB,BC,CD,DA的中點(diǎn),所以EF∥AC,HG∥AC,EF=HG=eq\f(1,2)AC,所以EF∥HG,EF=HG,所以四邊形EFGH是平行四邊形.反思感悟基本事實(shí)4表述的性質(zhì)通常叫做平行線的傳遞性,解題時(shí)首先找到一條直線,使所證的直線都與這條直線平行.【變式訓(xùn)練】如圖,已知在棱長(zhǎng)為a的正方體ABCD—A1B1C1D1中,M,N分別是棱CD,AD的中點(diǎn).求證:四邊形MNA1C1是梯形.證明如圖,連接AC,在△ACD中,∵M(jìn),N分別是CD,AD的中點(diǎn),∴MN是△ACD的中位線,∴MN∥AC,且MN=eq\f(1,2)AC.由正方體的性質(zhì),得AC∥A1C1,且AC=A1C1.∴MN∥A1C1,且MN=eq\f(1,2)A1C1,即MN≠A1C1,∴四邊形MNA1C1是梯形.考法02等角定理的應(yīng)用【典例2】如圖所示,△ABC和△A′B′C′的對(duì)應(yīng)頂點(diǎn)的連線AA′,BB′,CC′交于同一點(diǎn)O,且eq\f(OA,OA′)=eq\f(OB,OB′)=eq\f(OC,OC′)=eq\f(2,3),則eq\f(S△ABC,S△A′B′C′)=________.答案eq\f(4,9)解析∵AA′∩BB′=O,且eq\f(OA,OA′)=eq\f(OB,OB′)=eq\f(2,3),∴AB∥A′B′,同理AC∥A′C′,BC∥B′C′.∵A′B′∥AB,A′C′∥AC,∴∠BAC=∠B′A′C′,同理∠ABC=∠A′B′C′,∴△ABC∽△A′B′C′且eq\f(AB,A′B′)=eq\f(OA,OA′)=eq\f(2,3),∴eq\f(S△ABC,S△A′B′C′)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)))2=eq\f(4,9).反思感悟【變式訓(xùn)練】如圖所示,在正方體ABCD-A1B1C1D1中,E,E1分別是棱AD,A1D1的中點(diǎn).求證:∠BEC=∠B1E1C1.證明如圖,連接EE1.∵E1,E分別為A1D1,AD的中點(diǎn),∴A1E1綊AE,∴四邊形A1E1EA為平行四邊形,∴A1A綊E1E,又A1A綊B1B,∴E1E綊B1B,∴四邊形E1EBB1是平行四邊形.∴E1B1∥EB.同理E1C1∥EC.又∠B1E1C1與∠BEC的兩邊分別對(duì)應(yīng)平行,∴∠B1E1C1=∠BEC.分層提分分層提分題組A基礎(chǔ)過(guò)關(guān)練一、單選題1.空間兩個(gè)角α,β的兩邊分別對(duì)應(yīng)平行,且α=60°,則β為()A.60° B.120° C.30° D.60°或120°【答案】D【詳解】試題分析:根據(jù)等角定理,兩個(gè)角的兩邊分別對(duì)應(yīng)平行,則兩個(gè)角相等或互補(bǔ),所以為或,故選D.考點(diǎn):等角定理2.若a和b是異面直線,b和c是異面直線,則a和c的位置關(guān)系是(

)A.異面或平行 B.異面或相交C.異面 D.相交、平行或異面【答案】D【分析】根據(jù)空間中直線的位置關(guān)系,結(jié)合已知條件,即可容易判斷.【詳解】a和b是異面直線,b和c是異面直線,根據(jù)異面直線的定義可得:SKIPIF1<0可以是異面直線,如下所示:也可以相交也可以平行故選:SKIPIF1<0.【點(diǎn)睛】本題考查空間中直線之間的位置關(guān)系,屬簡(jiǎn)單題.3.過(guò)平面SKIPIF1<0外的直線l作一組平面與SKIPIF1<0相交,若所得交線分別為a,b,c…,則這些交線的位置關(guān)系為(

)A.相交于同一點(diǎn) B.相交但交于不同的點(diǎn)C.平行 D.平行或相交于同一點(diǎn)【答案】D【分析】對(duì)SKIPIF1<0于SKIPIF1<0的位置關(guān)系進(jìn)行分類討論,由此確定正確選項(xiàng).【詳解】當(dāng)SKIPIF1<0時(shí),根據(jù)線面平行的性質(zhì)定理以及平行公理可知:所得交線平行.當(dāng)SKIPIF1<0時(shí),所得交線交于同一點(diǎn)SKIPIF1<0.所以所得交線平行或相交于同一點(diǎn).故選:D4.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【解析】根據(jù)等角定理,即可得到結(jié)論.【詳解】SKIPIF1<0的兩邊與SKIPIF1<0的兩邊分別平行,根據(jù)等角定理易知SKIPIF1<0或SKIPIF1<0.故選:B.【點(diǎn)睛】本題考查等角定理,屬基礎(chǔ)題.5.在空間,下列說(shuō)法正確的是A.兩組對(duì)邊相等的四邊形是平行四邊形B.四邊相等的四邊形是菱形C.正方形確定一個(gè)平面D.三點(diǎn)確定一個(gè)平面【答案】C【解析】考慮特殊情況即可,四邊形有可能是空間四邊形,三點(diǎn)有可能共線,進(jìn)而可以確定答案【詳解】四邊形可能是空間四邊形,故A,B錯(cuò)誤;當(dāng)三點(diǎn)在同一直線上時(shí),存在無(wú)數(shù)個(gè)平面,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查點(diǎn)、線、面的空間關(guān)系,屬于基礎(chǔ)題6.如圖所示,在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),點(diǎn)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,則下列說(shuō)法正確的是(

)A.EF與GH平行B.EF與GH異面C.EF與GH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上D.EF與GH的交點(diǎn)M一定在直線AC上【答案】D【分析】連接EH,F(xiàn)G,根據(jù)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,和點(diǎn)E,H分別是邊AB,AD的中點(diǎn),得到EH//GF,且EH≠GF判斷.【詳解】解:如圖所示:連接EH,F(xiàn)G.因?yàn)镕,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,所以GF//BD,且GF=SKIPIF1<0BD.因?yàn)辄c(diǎn)E,H分別是邊AB,AD的中點(diǎn),所以EH//BD,且EH=SKIPIF1<0BD,所以EH//GF,且EH≠GF,所以EF與GH相交,設(shè)其交點(diǎn)為M,則M∈平面ABC,同理M∈平面ACD.又平面ABC∩平面ACD=AC,所以M在直線AC上.故選:D.二、多選題7.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是空間三條不同的直線,則下列結(jié)論錯(cuò)誤的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面【答案】ACD【分析】根據(jù)線線的位置關(guān)系,結(jié)合平面的基本性質(zhì)判斷各選項(xiàng)正誤即可.【詳解】解:由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0平行、異面都有可能,故A錯(cuò)誤;由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,故B正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不一定共面,如三棱柱的三條側(cè)棱,互相平行但不共面,故C錯(cuò)誤;當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共點(diǎn)時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不一定共面,如三棱柱共頂點(diǎn)的三條棱不共面,故D錯(cuò)誤;故選:ACD.8.(多選題)下列命題中,錯(cuò)誤的結(jié)論有(

)A.如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等B.如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等C.如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別垂直,那么這兩個(gè)角相等或互補(bǔ)D.如果兩條直線同時(shí)平行于第三條直線,那么這兩條直線互相平行【答案】AC【分析】由等角定理可判斷A、B的真假;舉反例可判斷C的真假;由平行公理可判斷D的真假.【詳解】對(duì)于選項(xiàng)A:如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ),故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B:由等角定理可知B正確;對(duì)于選項(xiàng)C:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別垂直,這兩個(gè)角的關(guān)系不確定,既可能相等也可能互補(bǔ),也可能既不相等,也不互補(bǔ).反例如圖,在立方體中,SKIPIF1<0與SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,但是SKIPIF1<0,SKIPIF1<0,二者不相等也不互補(bǔ).故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D:如果兩條直線同時(shí)平行于第三條直線,那么這兩條直線平行,故選項(xiàng)D正確.故選:AC.三、填空題9.在長(zhǎng)方體SKIPIF1<0中,與SKIPIF1<0平行的棱有____________(填寫(xiě)所有符合條件的棱)【答案】SKIPIF1<0【分析】根據(jù)長(zhǎng)方體結(jié)構(gòu)特點(diǎn)直接寫(xiě)出與SKIPIF1<0平行的棱即可.【詳解】長(zhǎng)方體具有三組互相平行的棱,并且每一組棱都有四條,由圖可知與SKIPIF1<0平行的棱還有:SKIPIF1<0,故答案為:SKIPIF1<0.10.如圖是正方體的表面展開(kāi)圖,E,F(xiàn),G,H分別是棱的中點(diǎn),則EF與GH在原正方體中的位置關(guān)系為_(kāi)_____.【答案】平行【分析】將正方體的表面展開(kāi)圖還原構(gòu)造成正方體,取AB,AA1的中點(diǎn)Q,P,連接EP,F(xiàn)Q,PQ,A1B,得到EF∥PQ,根據(jù)PQ∥A1B,HG∥A1B,即可得到EF∥GH.【詳解】由題意,將正方體的表面展開(kāi)圖還原構(gòu)造成正方體,如圖所示:分別取AB,AA1的中點(diǎn)Q,P,連接EP,F(xiàn)Q,PQ,A1B,由正方體的結(jié)構(gòu)特征可得EF∥PQ,又因?yàn)辄c(diǎn)Q,P,H,G分別是AB,AA1,A1B1,BB1的中點(diǎn),故PQ∥A1B,HG∥A1B,故PQ∥HG,所以EF∥GH.故答案為:平行11.如圖,空間四邊形SKIPIF1<0中,SKIPIF1<0分別是△SKIPIF1<0和△SKIPIF1<0的重心,若SKIPIF1<0,則SKIPIF1<0___.【答案】SKIPIF1<0##SKIPIF1<0【分析】連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于SKIPIF1<0,再連接SKIPIF1<0,SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,從而可求出答案.【詳解】連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于SKIPIF1<0,再連接SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.12.已知矩形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0的中點(diǎn),現(xiàn)將SKIPIF1<0沿SKIPIF1<0翻轉(zhuǎn),直到與SKIPIF1<0首次重合,則此過(guò)程中,線段SKIPIF1<0的中點(diǎn)的運(yùn)動(dòng)軌跡長(zhǎng)度為_(kāi)___________.【答案】SKIPIF1<0##SKIPIF1<0【分析】先分析出點(diǎn)SKIPIF1<0的軌跡是一個(gè)半圓,再結(jié)合三角形中位線定理可得SKIPIF1<0中點(diǎn)的軌跡也是一個(gè)半圓,即可得出結(jié)果【詳解】由已知得:四邊形SKIPIF1<0是正方形,SKIPIF1<0沿DM翻轉(zhuǎn)的過(guò)程中,點(diǎn)SKIPIF1<0的軌跡為以SKIPIF1<0為圓心,SKIPIF1<0為半徑的半圓,其半徑為SKIPIF1<0,這個(gè)半圓與DM垂直設(shè)線段SKIPIF1<0的中點(diǎn)SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)SKIPIF1<0,線段EF的中點(diǎn)為SKIPIF1<0,在以SKIPIF1<0為半徑的半圓上取一點(diǎn)SKIPIF1<0,連接SKIPIF1<0,并取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,由三角形中位線定理可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡為以SKIPIF1<0為圓心,SKIPIF1<0為半徑的半圓,其半徑為SKIPIF1<0,線段AC的中點(diǎn)的運(yùn)動(dòng)軌跡長(zhǎng)度為SKIPIF1<0.故答案為:SKIPIF1<0四、解答題13.如圖1所示,在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),將平面SKIPIF1<0沿SKIPIF1<0翻折起來(lái),使SKIPIF1<0到達(dá)SKIPIF1<0的位置(如圖2),SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),求證:四邊形SKIPIF1<0為平行四邊形.圖1

圖2【答案】證明見(jiàn)詳解.【解析】通過(guò)證明EF//GH,且EF=GF,即可證明.【詳解】在題圖1中,∵四邊形SKIPIF1<0為梯形,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),∴SKIPIF1<0且SKIPIF1<0.在題圖2中,易知SKIPIF1<0.∵SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形.即證.【點(diǎn)睛】本題考查通過(guò)線線平行證明平行四邊形,主要借助幾何關(guān)系進(jìn)行證明.14.如圖所示,SKIPIF1<0和SKIPIF1<0的對(duì)應(yīng)頂點(diǎn)的連線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于同一點(diǎn)O,且SKIPIF1<0.(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)求SKIPIF1<0的值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)根據(jù)已知條件可證SKIPIF1<0可得SKIPIF1<0,即可證明SKIPIF1<0,同理可證SKIPIF1<0,SKIPIF1<0;(2)根據(jù)等角定理得出SKIPIF1<0,SKIPIF1<0進(jìn)而可得SKIPIF1<0,即可求解.【詳解】(1)因?yàn)镾KIPIF1<0與SKIPIF1<0相交于點(diǎn)O,所以SKIPIF1<0與SKIPIF1<0共面,在SKIPIF1<0和SKIPIF1<0中,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0同理SKIPIF1<0,SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0和SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的方向相反,∴SKIPIF1<0.同理SKIPIF1<0,因此SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.15.在三棱錐SKIPIF1<0中,SKIPIF1<0分別是邊SKIPIF1<0的中點(diǎn).(1)求證:四邊形SKIPIF1<0是平行四邊形;(2)若SKIPIF1<0,求證:四邊形SKIPIF1<0為菱形.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)利用三角形中位線的性質(zhì),根據(jù)平行四邊形的判斷方法,即可得到結(jié)論;(2)利用有一組鄰邊相等的平行四邊形,可證結(jié)論.【詳解】(1)∵SKIPIF1<0分別是邊SKIPIF1<0的中點(diǎn).∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形;(2)若SKIPIF1<0,則SKIPIF1<0,∵四邊形SKIPIF1<0是平行四邊形,∴四邊形SKIPIF1<0為菱形.【點(diǎn)睛】本題解題的關(guān)鍵是利用三角形中位線的性質(zhì),平行四邊形的判斷方法進(jìn)行證明,屬于基礎(chǔ)題.16.如圖,在正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0和SKIPIF1<0的中點(diǎn).(1)求證:四邊形SKIPIF1<0為平行四邊形;(2)求證:SKIPIF1<0.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【分析】(1)根據(jù)正方體的性質(zhì)和平面幾何知識(shí)可得證;(2)根據(jù)空間兩個(gè)角相等定理或三角形全等可得證.【詳解】解:(1)∵SKIPIF1<0為正方體.∴SKIPIF1<0,且SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0分別為棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴SKIPIF1<0且SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0且SKIPIF1<0.又SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0且SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形.(2)法一:由(1)知四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0.同理可得四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0.∵SKIPIF1<0和SKIPIF1<0方向相同,∴SKIPIF1<0.法二:由(1)知四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0.同理可得四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0.又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.題組B能力提升練一、單選題1.在空間四邊形ABCD中,AC=BD,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn),順次連接各邊中點(diǎn)E,F(xiàn),G,H,所得四邊形EFGH的形狀是(

)A.梯形 B.矩形C.正方形 D.菱形【答案】D【分析】根據(jù)空間四邊形中各點(diǎn)的位置,結(jié)合中位線的性質(zhì)可得EFGH是平行四邊形,再由AC=BD即可判斷四邊形EFGH的形狀.【詳解】如圖所示,空間四邊形ABCD中,連接AC,BD可得一個(gè)三棱錐,將四個(gè)中點(diǎn)連接,得到四邊形EFGH,由中位線的性質(zhì)及基本性質(zhì)4知,EH∥FG,EF∥HG;∴四邊形EFGH是平行四邊形,又AC=BD,∴HG=SKIPIF1<0AC=SKIPIF1<0BD=EH,∴四邊形EFGH是菱形.故選:D2.已知在三棱錐SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】如圖所示,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,在SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,同理可得SKIPIF1<0,在SKIPIF1<0中,∵三角形兩邊之和大于第三邊即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故選D.3.對(duì)于空間三條直線,有下列四個(gè)條件:①三條直線兩兩相交且不共點(diǎn);②三條直線兩兩平行;③三條直線共點(diǎn);④有兩條直線平行,第三條直線和這兩條直線都相交.其中,使三條直線共面的充分條件有()A.1個(gè) B.2個(gè) C.3 D.4個(gè)【答案】B【分析】根據(jù)公理2以及推論進(jìn)行判斷,對(duì)于②③列舉出三條直線兩兩平行在不同平面內(nèi)的,三條相交直線不共面時(shí),如三棱錐的側(cè)面進(jìn)行判斷.【詳解】①中兩直線相交確定平面,則第三條直線在這個(gè)平面內(nèi),故①正確;②中可能有其中一條直線和另外兩條直線確定的平面平行,還有可能三條直線分別在三個(gè)相互平行的平面內(nèi),故②不對(duì);③中三條相交直線不共面時(shí).則它們可確定3個(gè)平面,如三棱錐的側(cè)面,故③不對(duì);④中兩直線平行確定一個(gè)平面,則第三條直線在這個(gè)平面內(nèi),故④正確;故答案為B【點(diǎn)睛】本題考查了平面公理2以及推論的應(yīng)用,主要利用公理的作用和公理中的關(guān)鍵條件進(jìn)行判斷,考查了空間想象能力,屬于基礎(chǔ)題.4.如圖,在棱長(zhǎng)為SKIPIF1<0的正方體SKIPIF1<0中,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0到直線SKIPIF1<0的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)給定條件,證明SKIPIF1<0,把直線SKIPIF1<0到直線SKIPIF1<0的距離轉(zhuǎn)化為點(diǎn)F到直線SKIPIF1<0的距離求解作答.【詳解】在棱長(zhǎng)為SKIPIF1<0的正方體SKIPIF1<0中,取SKIPIF1<0中點(diǎn)G,連接SKIPIF1<0,如圖,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,即有四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,則有SKIPIF1<0,因此直線SKIPIF1<0到直線SKIPIF1<0的距離等于點(diǎn)F到直線SKIPIF1<0的距離SKIPIF1<0,因?yàn)镾KIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,邊SKIPIF1<0上的高SKIPIF1<0,由三角形面積得:SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.故選:D5.如圖所示,在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),點(diǎn)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,則下列說(shuō)法正確的是(

)A.EF與GH平行B.EF與GH異面C.EF與GH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上D.EF與GH的交點(diǎn)M一定在直線AC上【答案】D【分析】連接EH,F(xiàn)G,根據(jù)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,和點(diǎn)E,H分別是邊AB,AD的中點(diǎn),得到EH//GF,且EH≠GF判斷.【詳解】解:如圖所示:連接EH,F(xiàn)G.因?yàn)镕,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,所以GF//BD,且GF=SKIPIF1<0BD.因?yàn)辄c(diǎn)E,H分別是邊AB,AD的中點(diǎn),所以EH//BD,且EH=SKIPIF1<0BD,所以EH//GF,且EH≠GF,所以EF與GH相交,設(shè)其交點(diǎn)為M,則M∈平面ABC,同理M∈平面ACD.又平面ABC∩平面ACD=AC,所以M在直線AC上.故選:D.6.如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0分別為線段SKIPIF1<0的中點(diǎn),則下列說(shuō)法正確的是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意結(jié)合三角形中位線的性質(zhì)可得:SKIPIF1<0,由平行公理可得:SKIPIF1<0.本題選擇C選項(xiàng).二、多選題7.已知三棱柱SKIPIF1<0的棱長(zhǎng)均相等,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】根據(jù)題意結(jié)合異面直線夾角逐項(xiàng)分析判斷.【詳解】對(duì)A:∵SKIPIF1<0SKIPIF1<0SKIPIF1<0,則AB與CF的夾角為SKIPIF1<0,不一定是直角,A錯(cuò)誤;對(duì)B:由題意:SKIPIF1<0為菱形,則SKIPIF1<0,B正確;對(duì)C:由題意:SKIPIF1<0,則SKIPIF1<0,C正確;對(duì)D:由題意:SKIPIF1<0為菱形,則SKIPIF1<0,即SKIPIF1<0大小無(wú)法確定,D錯(cuò)誤.故選:BC.8.(多選題)下列說(shuō)法中,正確的結(jié)論有(

)A.如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等B.如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角(或直角)相等C.如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別垂直,那么這兩個(gè)角相等或互補(bǔ)D.如果兩條直線同時(shí)平行于第三條直線,那么這兩條直線互相平行【答案】BD【分析】由等角定理可判斷A的真假;根據(jù)直線夾角的定義可判斷B的真假;舉反例可判斷C的真假;由平行公理可判斷D的真假.【詳解】對(duì)于選項(xiàng)A:如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ),故選項(xiàng)A錯(cuò)誤;對(duì)于選項(xiàng)B:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成的銳角或直角相等,故選項(xiàng)B正確;對(duì)于選項(xiàng)C:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別垂直,這兩個(gè)角的關(guān)系不確定,既可能相等也可能互補(bǔ),也可能既不相等,也不互補(bǔ).反例如圖,在立方體中,SKIPIF1<0與SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,但是SKIPIF1<0,SKIPIF1<0,二者不相等也不互補(bǔ).故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D:如果兩條直線同時(shí)平行于第三條直線,那么這兩條直線平行,故選項(xiàng)D正確.故選:BD.三、填空題9.如圖,點(diǎn)P,Q,R,S分別在正方體的四條棱上,且是所在棱的中點(diǎn),則直線PQ與RS是平行直線的圖是________(填序號(hào)).【答案】①②【分析】根據(jù)正方體的結(jié)構(gòu)特征,以及兩直線的位置關(guān)系的判定方法,即可求解.【詳解】根據(jù)正方體的結(jié)構(gòu)特征,可得①②中RS與PQ均是平行直線,④中RS和PQ是相交直線,③中RS和PQ是是異面直線.故答案為:①②.10.已知長(zhǎng)方體SKIPIF1<0的體積為9,SKIPIF1<0,SKIPIF1<0,且異面直線AC與SKIPIF1<0所成的角為SKIPIF1<0,則該長(zhǎng)方體的表面積為_(kāi)__________.【答案】SKIPIF1<0【分析】根據(jù)異面直線夾角的定義分析可得SKIPIF1<0,結(jié)合題意列式求長(zhǎng)方體的長(zhǎng)、寬、高,進(jìn)而求長(zhǎng)方體的面積.【詳解】連接SKIPIF1<0,設(shè)SKIPIF1<0,∵SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0為平行四邊形,∴SKIPIF1<0.又∵異面直線AC與SKIPIF1<0所成的角為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,根據(jù)題意可得SKIPIF1<0,解得SKIPIF1<0,則該長(zhǎng)方體的表面積為SKIPIF1<0.故答案為:SKIPIF1<0.11.如圖所示,在空間四邊形ABCD中,E,H分別為AB,AD的中點(diǎn),F(xiàn),G分別是BC,CD上的點(diǎn),且SKIPIF1<0,若BD=6cm,梯形EFGH的面積為28cm2,則平行線EH,F(xiàn)G間的距離為_(kāi)_______.【答案】8【詳解】∵SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0上的點(diǎn),且SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0間的距離為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0(SKIPIF1<0),故答案為SKIPIF1<0(SKIPIF1<0).12.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是空間中的三條相互不重合的直線,給出下列說(shuō)法:①若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;②若SKIPIF1<0與SKIPIF1<0相交,SKIPIF1<0與SKIPIF1<0相交,則SKIPIF1<0與SKIPIF1<0相交;③若SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0一定是異面直線;④若SKIPIF1<0,SKIPIF1<0與SKIPIF1<0成等角,則SKIPIF1<0.其中正確的說(shuō)法是______(填序號(hào)).【答案】①【分析】根據(jù)平行公理可判斷①,在空間考慮兩直線都與第三條直線直線相交的所有可能情況可判斷②,考慮在兩個(gè)平面內(nèi)的兩條直線的所有位置關(guān)系可判斷③,兩條直線與第三條直線成等角,這兩條直線可相交可平行可異面判斷④.【詳解】由公理4知①正確;當(dāng)SKIPIF1<0與SKIPIF1<0相交,SKIPIF1<0與SKIPIF1<0相交時(shí),SKIPIF1<0與SKIPIF1<0可能相交、平行,也可能異面,故②不正確;當(dāng)SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0可能平行、相交或異面,故③不正確;當(dāng)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0成等角時(shí),SKIPIF1<0與SKIPIF1<0可能相交、平行,也可能異面,故④不正確.故答案為:①【點(diǎn)睛】本題主要考查了空間中線與線的位置關(guān)系,考查了空間想象力,屬于中檔題.四、解答題13.如圖,E,F(xiàn)分別是長(zhǎng)方體ABCD-A1B1C1D1的棱A1A,C1C的中點(diǎn).求證:四邊形B1EDF為平行四邊形.【答案】證明見(jiàn)解析【分析】結(jié)合線線平行以及平行四邊形的知識(shí)來(lái)證得結(jié)論成立.【詳解】由于SKIPIF1<0分別是長(zhǎng)方體SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0是SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,根據(jù)長(zhǎng)方體的性質(zhì)可知SKIPIF1<0且SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形.14.如圖,E,F(xiàn),G,H分別是空間四邊形ABCD各邊上的點(diǎn),且SKIPIF1<0,SKIPIF1<0.(1)證明:E,F(xiàn),G,H四點(diǎn)共面.(2)m,n滿足什么條件時(shí),四邊形EFGH是平行四邊形?【答案】(1)見(jiàn)解析(2)當(dāng)SKIPIF1<0時(shí),四邊形EFGH是平行四邊形.【分析】(1)根據(jù)平行線分線段成比例的性質(zhì),可得SKIPIF1<0和SKIPIF1<0,即可根據(jù)空間中平行線的傳遞性證明SKIPIF1<0,即可得E,F,G,H四點(diǎn)共面.(2)根據(jù)平行線分線段成比例,分別用SKIPIF1<0和SKIPIF1<0及SKIPIF1<0表示出SKIPIF1<0和SKIPIF1<0,由平行四邊形對(duì)邊相等即可求得SKIPIF1<0.【詳解】(1)證明:連接BD因?yàn)镾KIPIF1<0,所以SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0所以E,F,G,H四點(diǎn)共面(2)當(dāng)SKIPIF1<0時(shí),四邊形EFGH為平行四邊形由(1)可知SKIPIF1<0因?yàn)镾KIPIF1<0所以SKIPIF1<0同理可得SKIPIF1<0由SKIPIF1<0可得SKIPIF1<0得SKIPIF1<0故當(dāng)SKIPIF1<0時(shí),四邊形EFGH是平行四邊形【點(diǎn)睛】本題考查了平行線分線段成比例的性質(zhì),由線段比例關(guān)系及平行關(guān)系得線段關(guān)系,屬于基礎(chǔ)題.15.梯形ABCD中,AB∥CD,E、F分別為BC和AD的中點(diǎn),將平面DCEF沿EF翻折起來(lái),使CD到C′D′的位置,G、H分別為AD′和BC′的中點(diǎn),求證:四邊形EFGH為平行四邊形.【答案】詳見(jiàn)解析【詳解】試題分析:根據(jù)梯形中位線的性質(zhì)可得SKIPIF1<0且SKIPIF1<0,同理可得SKIPIF1<0且SKIPIF1<0,根據(jù)傳遞性可得SKIPIF1<0,進(jìn)而可得結(jié)論.試題解析:∵梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),∴SKIPIF1<0且SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn),∴SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形.16.在如圖所示的正方體ABCD-A1B1C1D1中,E,F(xiàn),E1,F(xiàn)1分別是棱AB,AD,B1C1,C1D1的中點(diǎn),求證:(1)SKIPIF1<0;(2)∠EA1F=∠E1CF1.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析【詳解】試題分析:(1)連接SKIPIF1<0,SKIPIF1<0,由三角形中位線定理可得SKIPIF1<0,SKIPIF1<0,根據(jù)正方體的性質(zhì)可得SKIPIF1<0,故而可得結(jié)論;(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,首先證明四邊形SKIPIF1<0是平行四邊形,得到SKIPIF1<0,再證四邊形SKIPIF1<0是平行四邊形及平行的傳遞性,得到SKIPIF1<0,同理得SKIPIF1<0,結(jié)合角兩邊的方向相反,進(jìn)而可得結(jié)論成立.試題解析:(1)連接SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,同理SKIPIF1<0,在正方體SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,所以SKIPIF1<0.(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,所以SKIPIF1<0,同理可證:SKIPIF1<0,又SKIPIF1<0與SKIPIF1<0兩邊的方向均相反,所以SKIPIF1<0.題組C培優(yōu)拔尖練一、單選題1.在正六棱柱SKIPIF1<0任意兩個(gè)頂點(diǎn)的連線中與棱AB平行的條數(shù)為(

)A.2 B.3 C.4 D.5【答案】D【分析】作出幾何體的直觀圖觀察即可.【詳解】解:連接CF,C1F1,與棱AB平行的有SKIPIF1<0,共有5條,故選:D.2.已知E,F(xiàn),G,H分別為空間四邊形ABCD各邊AB,BC,CD,DA的中點(diǎn),若對(duì)角線BD=2,AC=4,則EG2+HF2的值是(

)A.5 B.10C.12 D.不能確定【答案】B【分析】根據(jù)中位線定理判斷四邊形EFGH是平行四邊形,再由SKIPIF1<0計(jì)算可得解.【詳解】如圖所示,由三角形中位線的性質(zhì)可得SKIPIF1<0,SKIPIF1<0.所以四邊形EFGH是平行四邊形,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:B.3.如圖所示,在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),點(diǎn)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,則下列說(shuō)法正確的是(

)A.EF與GH平行B.EF與GH異面C.EF與GH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上D.EF與GH的交點(diǎn)M一定在直線AC上【答案】D【分析】連接EH,F(xiàn)G,根據(jù)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,和點(diǎn)E,H分別是邊AB,AD的中點(diǎn),得到EH//GF,且EH≠GF判斷.【詳解】解:如圖所示:連接EH,F(xiàn)G.因?yàn)镕,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,所以GF//BD,且GF=SKIPIF1<0BD.因?yàn)辄c(diǎn)E,H分別是邊AB,AD的中點(diǎn),所以EH//BD,且EH=SKIPIF1<0BD,所以EH//GF,且EH≠GF,所以EF與GH相交,設(shè)其交點(diǎn)為M,則M∈平面ABC,同理M∈平面ACD.又平面ABC∩平面ACD=AC,所以M在直線AC上.故選:D.4.如圖,在棱長(zhǎng)為SKIPIF1<0的正方體SKIPIF1<0中,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0到直線SKIPIF1<0的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)給定條件,證明SKIPIF1<0,把直線SKIPIF1<0到直線SKIPIF1<0的距離轉(zhuǎn)化為點(diǎn)F到直線SKIPIF1<0的距離求解作答.【詳解】在棱長(zhǎng)為SKIPIF1<0的正方體SKIPIF1<0中,取SKIPIF1<0中點(diǎn)G,連接SKIPIF1<0,如圖,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,即有四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,則有SKIPIF1<0,因此直線SKIPIF1<0到直線SKIPIF1<0的距離等于點(diǎn)F到直線SKIPIF1<0的距離SKIPIF1<0,因?yàn)镾KIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,邊SKIPIF1<0上的高SKIPIF1<0,由三角形面積得:SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.故選:D5.如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0分別為線段SKIPIF1<0的中點(diǎn),則下列說(shuō)法正確的是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意結(jié)合三角形中位線的性質(zhì)可得:SKIPIF1<0,由平行公理可得:SKIPIF1<0.本題選擇C選項(xiàng).6.如圖所示,在直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0上的點(diǎn),SKIPIF1<0且,SKIPIF1<0(如圖1).將四邊形SKIPIF1<0沿SKIPIF1<0折起,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(如圖2).在折起的過(guò)程中,則下列表述:①SKIPIF1<0平面SKIPIF1<0;②四點(diǎn)B、C、E、F可能共面;③SKIPIF1<0,則平面SKIPIF1<0平面SKIPIF1<0;④平面SKIPIF1<0與平面SKIPIF1<0可能垂直.其中正確的是(

)A.①④ B.①③ C.②③④ D.①②④【答案】B【分析】連接SKIPIF1<0、SKIPIF1<0交于點(diǎn)SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,證明四邊形SKIPIF1<0為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接SKIPIF1<0,證明出SKIPIF1<0,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面SKIPIF1<0與平面SKIPIF1<0垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對(duì)于命題①,連接SKIPIF1<0、SKIPIF1<0交于點(diǎn)SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0、SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,如下圖所示:則SKIPIF1<0且SKIPIF1<0,四邊形SKIPIF1<0是矩形,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,命題①正確;對(duì)于命題②,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論