現(xiàn)代數(shù)字信號處理AdvancedDigitalSignalProcessingch4pse_第1頁
現(xiàn)代數(shù)字信號處理AdvancedDigitalSignalProcessingch4pse_第2頁
現(xiàn)代數(shù)字信號處理AdvancedDigitalSignalProcessingch4pse_第3頁
現(xiàn)代數(shù)字信號處理AdvancedDigitalSignalProcessingch4pse_第4頁
現(xiàn)代數(shù)字信號處理AdvancedDigitalSignalProcessingch4pse_第5頁
已閱讀5頁,還剩51頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Advanced

Digital

SignalProcessing(Modern

Digital

Signal

Processing)Chapter

4

Power

SpectrumEstimationAmplitude

Spectrum

&

Power

SpectrumAmplitude

spectrum

density

■Signal

amplitudeat

each

frequencyFinite-energy

Fourierdeterministic

signal

transform4.1

IntroductionAmplitudespectrum(including

phase)Power

spectrum

density

(PSD)Real

stationaryrandom

signalFouriertransformPower

spectrum(without

phase)AutocorrelationfunctionSignal

powerat

eachfrequencyWiener-Khintchine

TheoremFourier

transformInverse

Fourier

transf

PSD

of

Ergodic

Stationary

RandomSignalPower

Spectrum

Estimation

(PSE)Estimating

the

PSD

of

real

ergodicstationary

random

signal

with

finiteobservations

(sample)Classical

&

Modern

PSE

MethodsClassical

(linear)

PSEPSE

based

on

Fourier

transform,

non-parametric

model

methodModern

(nonlinear)

PSEPSE

based

on

signal

model

(parametricmodel

method)Desirable

properties

of

PSEUnbiasedConsistentEfficientHigh

frequency

resolutionNarrow

main

lobe,

low

side

lobeSmall

sample

lengthBlackman-Tukey

(BT)

Method

for

PSE4.2

Classical

PSEThe

Fourier

transform

of

the

biasedestimation

of

autocorrelation

function.Periodogram

Method

for

PSEPeriodogramThe

average

energy

spectrum

of

finite

lengthsample

is

an

estimation

of

PSDFFT

The

periodogram

PSE

is

an

asymptoticallyunbiased

but

not

a

consistent

estimationBartlet

windowLimitations

of

Classical

PSELow

frequency

resolutionCaused

by

the

effects

of

data

window:The

degradation

in

resolution

by

mainlobe;The

power

leakage

by

side

lobe

(inter-spectrum

interference).Inconsistent

estimationThe

PSE

of

Harmonic

Process

With

PeriodogramThe

PSE

of

White

Noise

With

PeriodogramModifications

of

Classical

PSEAchieving

low

variance

at

the

expense

ofbias

and

frequency

resolutionAveraging

Periodogram

(Bartlet

method)N:

data

length,

N=L×MM

M

M

MPeriodogramPeriodogramPeriodogramPeriodogramAveragingAveraging

PeriodogramIts

bias

is

larger

than

the

periodogram

while

its

variancthan

the

Periodogram:Modified

PeriodogramThe

window

will

smooth

the

PSD

acquired

by

periodogram.

Ifunction

is

similar

to

a

lowpass

filter.

Averaging

modified

periodogram

(Welchmethod)N:

data

length,

N=L×MM

M

M

MModifiedPeriodogramAveragingAveraging

PeriodogramModifiedPeriodogramModifiedPeriodogramModifiedPeriodogramThe

PSE

of

Harmonic

Process

With

WelchThe

sequence

is

divided

into

eight

sections

with

50%overlap,

each

section

is

windowed

with

a

HammingwindowThe

PSE

of

White

Noise

With

WelchThe

sequence

is

divided

into

eight

sections

with

50%overlap,

each

section

is

windowed

with

a

Hammingwindow4.3

Parameter

Model

Methodsfor

PSEBasic

PrinciplesClassical

PSEAutocorrelationfunctionPSDFouriertransformObservationsxN(n)Estimationof

signalmodel

H(z)Parameter

model

methodsPSDObservationsNx

(n)Linear

systemwith

transferfunction

H(z)White

noisew(n)

The

Time

Series

Model

of

StationaryRandom

SignalStationary

randomsequence

x(n)MA(q)

model

(all-zero

model)Suitable

for

signals

whose

power

spectrahave

vales

but

no

peaks

AR(p)

model

(all-pole

model,

most

widelyused)Suitable

for

signals

whose

power

spectrahave

peaks

but

no

vales,

but

be

widelyused

since

the

linear

relation

between

itsparameters

and

the

signal

autocorrelationfunctionARMA(p,q)

model

(zero-pole

model)Suitable

for

signals

whose

power

spectrahave

vales

and

peaksModel

parameters

to

be

estimatedMA(q):AR(p):ARMA(p,q):

The

Relation

between

the

AutocorrelationFunction

&

the

Model

ParametersARMA(p,q)

modelInverse

z

transformGeneralized

Yule-Walker

equations:

a

nonlinear

eqset,

but

the

equations

are

linear

when

m>q.MA(q)

modelAR

(p)

modelInitial

valutheoremYule-Walkerequation:a

linearequation

setAR

model

power

spectrum

estimation

(AR

PSE)Observations

xN(n)Estimation

ofautocorrelation

functionEstimation

of

ARmodel

parametersAR

model

estimationProperties

of

AR

PSEThe

implied

autocorrelation

function

extensiWith

the

p+1

samples

of

autocorrelation

functio(ACF)

estimationThe

AR

model

parameter

estimation

is

obtainedby

solving

the

Yule-Walker

equation

(m=0,1,…,pFor

m>p,

thecan

be

extrapolated

fromthose

ACF

estimations

of

m≤p

byi.e.,

extrapolating

fromtoMESEKnown

ACF

estimationMaximum

entropyextrapolationUnknown

ACFestimationACFs

withmaximumuncertaintyMESE

of

zero-mean

Gaussian

random

sequencePDF

of

N-dimension

Gaussian

random

sequenceandand

so

on.The

equivalence

between

the

AR

PSE

and

theMESE

of

Gaussian

random

sequenceAR

PSE

for

p=N:MESE

of

Gaussian

random

sequenceFor

Gaussian

random

sequenceMaximum

entropyextrapolationAR

PSE

impliedextrapolation=MESEAR

PSE=There

are

no

poles

of

its

AR

modeloutside

the

unit

circle,

elseThe

stability

of

AR

modelStationary

random

sequence

x(n)The

AR

model

of

stationary

randomsequence

is

stable

(minimum

phase

model)

The

relationship

between

the

AR

PSE

and

thelinear

predictionOne-step

pure

linear

optimal

prediction

filterA

one-step

pure

linear

optimal

prediction

filtethe

solution

of

the

Yule-Walker

equation:AR(p)

modelThe

AR(p)

parameters

could

be

obtained

asthe

coefficients

that

minimized

the

predictionerror

power

of

a

p-th

order

linear

predictor.Methods

of

AR

PSE

(Solutions

of

Y-K

Equation)Levinson-Durbin

recursive

algorithmp

order

AR

model

equationp+1

order

AR

model

equationLetLetExpanded

equationPreparative

equationIfTheni.e.The

predictive

erroris

reduced

graduallyas

p

increases.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論