版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版高一數(shù)學(xué)知識(shí)點(diǎn)最新總結(jié)五篇分享
高中數(shù)學(xué)是許多同學(xué)的噩夢(mèng),學(xué)問(wèn)點(diǎn)眾多而且雜,對(duì)于高一的同
學(xué)們很不友好,我建議同學(xué)們通過(guò)總結(jié)學(xué)問(wèn)點(diǎn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),這
樣可以提高學(xué)習(xí)效率。下面就是我給大家?guī)?lái)的人教版高一數(shù)學(xué)學(xué)問(wèn)
點(diǎn)總結(jié),盼望能關(guān)心到大家!
人教版高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)1
空間幾何體表面積體積公式:
1、圓柱體:表面積:2nRr+2TiRh體積:nR2h(R為圓柱體上下底圓半
徑,h為圓柱體高)
2、圓錐體:表面積:TiR2+7iR[(h2+R2)的]體積:nR2h/3(r為圓錐體低
圓半徑,h為其高,
3、a-邊長(zhǎng),S=6a2,V=a3
4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[Sl+S2+(SlS2)A1/2]/3
8、S1-上底面積,S2-下底面積,SO-中h-高,V=h(Sl+S2+4S0)/6
9、圓柱r-底半徑,h-高,C一底面周長(zhǎng)S底一底面積,S側(cè)一,S表一表
面積C=2nrS底=nr2,S15!!]=Ch,S表=(211+2s底,V=S底h=nr2h
10、空心圓柱R-外圓半徑,1--內(nèi)圓半徑h-高V=nh(RA2-rA2)
11>r-底半徑h-高V=nrA2h/3
1
12、r-上底半徑,R-下底半徑,h-高V=7ih(R2+Rr+r2)/313、球r-半徑
d-直徑V=4/3nrA3=ndA3/6
14、球缺h-球缺高/-球半徑,a-球缺底半徑
V=nh(3a2+h2)/6=nh2(3r-h)/3
15、球臺(tái)rl和r2-球臺(tái)上、下底半徑h-高V=nh[3(r!2+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面
直徑V=2n2Rr2=TT2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=nh(2D2+d2)/12,(母
線是圓弧形,圓心是桶的中心)V=nh(2D2+Dd+3d2/4)/15(母線是拋物線
形)
人教版高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)2
函數(shù)的有關(guān)概念
1.函數(shù)的概念
設(shè)A、B是非空的數(shù)集,假如根據(jù)某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)
于集合A中的任意一個(gè)數(shù)X,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),
那么就稱f:A玲B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x團(tuán)A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相
對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x國(guó)A}叫做函數(shù)的值域.
留意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
2
(2)偶次方根的被開方數(shù)不小于零;
⑶對(duì)數(shù)式的真數(shù)必需大于零;
(4)指數(shù)、對(duì)數(shù)式的底必需大于零且不等于1.
⑸假如函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,
它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不行以等于零,
(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證明際問(wèn)題有意義.
相同函數(shù)的推斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的
字母無(wú)關(guān));
②定義域全都(兩點(diǎn)必需同時(shí)具備)
2.值域:先考慮其定義域
(1)觀看法⑵配方法⑶代換法
人教版高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)3
1:一般式:Ax+By+C=O(A、B不同時(shí)為0)適用于全部直線
K=-A/B,b=-C/B
Al/A2=B:L/B2wCl/C2e>兩直線平行
A1/A2=B1/B2=C1/C2《玲兩直線重合
橫截距a=-C/A
縱截距b=-C/B
2:點(diǎn)斜式:y-y0=k(x,0)適用于不垂直于x軸的直線
表示斜率為k,且過(guò)(x0,y0)的直線
3:截距式:x/a+y/b=l適用于不過(guò)原點(diǎn)或不垂直于x軸、y軸的直
3
線
表示與X軸、y軸相交,且X軸截距為a,y軸截距為b的直線
4:斜截式:y=kx+b適用于不垂直于x軸的直線
表示斜率為k且y軸截距為b的直線
5:兩點(diǎn)式:適用于不垂直于x軸、y軸的直線
表示過(guò)(xl,yl)和(x2,y2)的直線
(y-yl)/(y2-yl)=(x-xl)/(x2-xl)(xl*x2,yl*y2)
6:交點(diǎn)式:fl(x,y)m+f2(x,y)=0適用于任何直線
表示過(guò)直線fl(x,y)=O與直線f2(x,y)=0的交點(diǎn)的直線
7:點(diǎn)平式:f(x,y)-f(xO,yO)=O適用于任何直線
表示過(guò)點(diǎn)(xO,yO)且與直線f(x,y)=O平行的直線
8:法線式:x-cosa+ysina-p=0適用于不平行于坐標(biāo)軸的直線
過(guò)原點(diǎn)向直線做一條的垂線段,該垂線段所在直線的傾斜角為a,
P是該線段的長(zhǎng)度
9:點(diǎn)向式:(x-xO)/u=(y-yO)/v(uHO,vHO)適用于任何直線
表示過(guò)點(diǎn)(xO,yO)且方向向量為(u,v)的直線
10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線
表示過(guò)點(diǎn)(x0,y0)且與向量(a,b)垂直的直線
11:點(diǎn)到直線距離
點(diǎn)P(xO,yO)到直線l:Ax+By+C=O的距離
d=|AxO+ByO+C|/VA2+B2
兩平行線之間距離
4
若兩平行直線的方程分別為:
Ax+By+Cl=OAx+By+C2=0則
這兩條平行直線間的距離d為:
d=IC1-C2I/V(A2+B2)
12:各種不同形式的直線方程的局限性:
(1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線;
(2)兩點(diǎn)式不能表示與坐標(biāo)軸平行的直線;
⑶截距式不能表示與坐標(biāo)軸平行或過(guò)原點(diǎn)的直線;
(4)直線方程的一般式中系數(shù)A、B不能同時(shí)為零.
13:位置關(guān)系
若直線Ll:Alx+Bly+Cl=O與直線L2:A2x+B2y+C2=0
1.當(dāng)A1B2-A2B1W0時(shí),相交
2.A1/A2=B1/B2HC1/C2,平行
3.A1/A2=B1/B2=C1/C2,重合
4.A1A2+B1B2=O,垂直
人教版高一數(shù)學(xué)學(xué)問(wèn)點(diǎn)5
空間直角坐標(biāo)系定義:
過(guò)定點(diǎn)。,作三條相互垂直的數(shù)軸,它們都以0為原點(diǎn)且一般具有
相同的長(zhǎng)度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎
軸);統(tǒng)稱坐標(biāo)軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂
線;它們的正方向要符合右手規(guī)章,即以右手握住z軸,當(dāng)右手的四指從
正向x軸以n/2角度轉(zhuǎn)向正向y軸時(shí),大拇指的指向就是z軸的正向,
5
這樣的三條坐標(biāo)軸就組成了一個(gè)空間直角坐標(biāo)系,點(diǎn)。叫做坐標(biāo)原點(diǎn)。
1、右手直角坐標(biāo)系
①右手直角坐標(biāo)系的建立規(guī)章:x軸、y軸、z軸相互垂直,分
別指向右手的拇指、食指、中指;
②已知點(diǎn)的坐標(biāo)P(x,y,z)作點(diǎn)的方法與步驟(路徑法):
沿x軸正方向(xO時(shí))或負(fù)方向(xO時(shí))移動(dòng)|x|個(gè)單位,再沿y軸正
方向(yO時(shí))或負(fù)方向(yO時(shí))移動(dòng)|y|個(gè)單位,最終沿x軸正方向(zO時(shí))
或負(fù)方向(z
③已知點(diǎn)的位置求坐標(biāo)的方法:
過(guò)P作三個(gè)平面分別與x軸、y軸、z軸垂直于A,B,C,點(diǎn)A,
B,C在x軸、y軸、z軸的坐標(biāo)分別是a,b,c則(a,b,c)就是點(diǎn)P的坐標(biāo)。
2、在x軸上的點(diǎn)分別可以表示為(a,0,0),(0,b,0),(0,0,c)。
在坐標(biāo)平面xOy,xOz,yOz內(nèi)的點(diǎn)分別可以表示為
(a,b,0),(a,0,c),Ob,c)。
3、點(diǎn)P(a,b,c)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為(a,-b,-c);
點(diǎn)P(a,b,c)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為ba,b,-c);
點(diǎn)P(a,b,c)關(guān)于z軸的對(duì)稱點(diǎn)的坐標(biāo)為卜a,-b,c);
點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面xOy的對(duì)稱點(diǎn)為(a,b,-c);
點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面xOz的對(duì)稱點(diǎn)為(a,-b,c);
點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面yOz的對(duì)稱點(diǎn)為卜a,b,c);
點(diǎn)P(a,b,c)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(-a,-b,-c)。
4、已知空間兩點(diǎn)P(xl,yl,zl),Q(x2,y2,z2),則線段PQ的中點(diǎn)坐
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標(biāo)準(zhǔn)施工單位勞動(dòng)合同范本
- 2025景區(qū)導(dǎo)視系統(tǒng)設(shè)計(jì)合同范本
- 2025合同模板建設(shè)工程項(xiàng)目合作框架協(xié)議范本
- 課題申報(bào)參考:鋰電池全產(chǎn)業(yè)鏈降碳責(zé)任共擔(dān)機(jī)制研究
- 課題申報(bào)參考:困境兒童網(wǎng)絡(luò)風(fēng)險(xiǎn)識(shí)別與網(wǎng)絡(luò)素養(yǎng)培育的干預(yù)研究
- 現(xiàn)代學(xué)校食品安全管理策略研究
- 二零二五年度高速公路服務(wù)區(qū)車位租賃與便利店合作合同4篇
- 安徽省合肥市智育聯(lián)盟2023-2024學(xué)年八年級(jí)下學(xué)期4月期中物理試題【含答案、解析】
- 2025年外研版2024選修3生物上冊(cè)月考試卷
- 2025年華師大版必修3歷史上冊(cè)月考試卷含答案
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末質(zhì)量檢測(cè)綜合物理試題(含答案)
- 2024企業(yè)答謝晚宴會(huì)務(wù)合同3篇
- 電氣工程及其自動(dòng)化專業(yè)《畢業(yè)設(shè)計(jì)(論文)及答辯》教學(xué)大綱
- 《客艙安全管理與應(yīng)急處置》課件-第14講 應(yīng)急撤離
- 中華人民共和國(guó)文物保護(hù)法
- 2025屆高考作文押題預(yù)測(cè)5篇
- 節(jié)前物業(yè)安全培訓(xùn)
- 阿里巴巴國(guó)際站:2024年珠寶眼鏡手表及配飾行業(yè)報(bào)告
- 高甘油三酯血癥相關(guān)的器官損傷
- 手術(shù)室護(hù)士考試題及答案
- 牙膏項(xiàng)目創(chuàng)業(yè)計(jì)劃書
評(píng)論
0/150
提交評(píng)論