




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
6GNativeAlwirelessNetworkand
AlLargemodel
Tianjiaochen
2023-12
1
2
Outline
Drivingforcesof6GnativeAI
6GnativeAIandkeyfeatures
36GandAILargeModel
2
BusinessneedsAI
CustomersneedAI
DemandforUbiquitousIntelligence
AIhasbecomethecoredrivingforceforanewroundofindustrialtransformation.Theautomation,digitalizationandintelligenceoftheindustryrequireubiquitousintelligence.
NetworkautonomyneedsAI
Operation&maintenance
MedicalRecognition
Securitymonitor
Machinetranslation
Voiceprintrecognition
Emergencycommunication
SmartNavigation
SmartManufacturing
Robotrescue
Customizednetwork
Smartcoverage
PersonalizedRecommend.
Theintegrationof6GandAIincludestwoaspects:"AIforNetwork"
3
and“NetworkforAI"
Performance
AIenhancesnetworkperformance
network
cost
networkoperationandmaintenanceefficiency
TheDrivingForceofAIforNetwork
Mobilecommunicationtechnologyfacesbottlenecks,requiringurgenttechnologicalinnovationand
interdisciplinaryintegration.AIisakeysolutionforenhancingnetworkperformance.
Traditionalcommunicationsystemsfaceperformancebottlenecks
Optimization
Conflictsbetweennetworkoperationefficiency,complexity,andcost
contradictory
triangle
complexity
6Gposesmorechallengingdemandmetrics
9cpbiitisnhancedbyM203
8abiitie8adddbyM
Currenttechnologyfallsshortofmeeting6G'sneeds
Difficultyinestimatinglargerscale
MIMOchannels
Densebasestationdeploymentleads
toincreasedinterference
Morecomplexsystemdesignsleadto
increasedenergyconsumption
Complexroutinginheterogeneous
equipmentnetworks
Diversecommunicationscenario
requirementsarefragmented
airinterface
Moreaccuratechannelinformation
Moreprecisepositioning
Enhancedinterferencecancellationcapabilities
Enhancedenergyefficiency,spectralcapacity
network
Improvedsceneadaptationspeed
Morebalancedtrafficscheduling
Fasternetworkinginterferenceavoidance
Morerefinedbusinessidentification
Moreaccuratefaultlocation
4
5
6GnetworkinherentlyprovidesAIservices
5G
communicationservice
communicationability
TheDrivingForceofNetworkforAI
ITUextends6Gscenariostoubiquitousintelligence.AIneedstobetransformedintonewcapabilitiesandservicesfor6GcommunicationnetworkstoachieveAIaaS
ITUextends6Gscenariostoubiquitousintelligence
GetAIanytime,anywhere
LowlatencyAIinference/training
SupportmobileAI
6G
communicationability
computingability
perceptionabilitydataabilityAImodelability
+
AIservicequality
AIservice
assurance
AIsecurityandprivacyprotection
Scenario-drivenAI
Intelligentdata
analysis
NWDAF
UE
CN
RAN
AIservers
AIforNetworks
Antennaweighttuning
Usermovementprediction
Problem:It‘schallengingtoguaranteereal-time,effective,and
consistentdata.CompletingtheentireAIprocessinvolveshightrialanderrorcosts.
High-speed
intelligentfollowing
NetworksforAI
ServiceOrderTransmission
Real-timemulti-agentcollaboration
Network
Usermovementprediction
CloudAIServiceProvider
UE
ChallengesintheIntegrationof5GNetworkandAI
Fulfilling6GandAIintegrationdemands,theuniversalityandefficiencyofexistingAIdesignmethods
drivenbyscenariousecases,plugins,orgraftsneedtobeimproved.
ExternalorgraftingAI
.AddAIserversorAI-relatednetworkfunctionstothenetwork,suchasNWDAF
.DesignseparateAImodelsforspecificairinterfaceandnetwork
optimizationusecases
Massivetrafficdata
Changingchannelconditions
NetworkManagement
Reducedswitchingperformance
Problem:AImodelshavelowgeneralization,long
developmentcycles,andhighcosts
.CloudAIserviceprovidersprovidebest-effortAIservicesafteruserssubmitorders
SubmitAINetwork
.DesigndifferentAIserviceprocessesfordifferentthird-partyAI
scenarios
InternetofVehicles
smartfactory
XR/VR
Problem:ThenetworkstrugglestorapidlydeployAIservicesfordiversescenarios
Problem:Dataisonlyuploadedtothecloud,makingitdifficultto
6
efficientlyleveragetheubiquitousresourceswithinthenetwork,whichcannotguaranteethequalityandsecurityofAIservices
...
...
Cloud
CloudAIproviders
CN
CN
Trafficanalysis
Trafficanalysis
Antennaadjustment
Antennaadjustment
Movementprediction
Movementprediction
7
6GNativeAIDesignPrinciples
Toachieveubiquitousintelligence,6Gnetworkarchitecturerequires"fourtransformations"
Fromexternaltonativeandintegrated
Frombest-efforttoAlservicequalityguarantee
Cloud
NWDAF
CommunicationQoS
(·)
AIworkflow1
5GExternalAI
6G
NativeAIAIworkflow2
CommunicationQoS
Fromscenariodriventocapabilitydriven
Frommultielementsdecouplingtocollaboration
Fourelementscollaboration
AI
Algorithm
Computing
Communication
()
Data
1
2
Outline
Drivingforcesof6GnativeAI
6GnativeAIandkeyfeatures
36GandAILargeModel
8
Method
6GNativeAInetwork
Challenge:AsthethreefundamentalcomponentsofAI(data,algorithmsandcomputing)havegained
significanceonparwithnetworkconnections,thedesignofthecorrespondingarchitecture,interfaces,andprotocolsshouldspantheentireAIlifecycle.
Dataplane:
Resourcelayer:
provideunderlyingresources
Networkfunctionlayer:
providespecificnetworkfunction/networkservicecapabilities
Applicationandservicelayer:
providecorrespondingsupportfor
customers'businessneeds.
managesnetworkdataandprovidesdataservices
Computingplane:
managescomputingandprovidescomputingservices
Intelligentplane:
providestheoperatingenvironmentforfulllife-cycleofnativeAI.
Unlike5Gnetwork,newdataplane,smartplane,andcomputingplanewillbedefinedin6Gnetwork,andtraditionalcontrolplaneanduserplaneareexpectedtobeextendedaswell.
9
PlatformizedServiceNetwork
Management
&
Orchestration
Task
Management
Computin
g
Connection
UnifiedIPcomputing-
networkbase
TaskControl
OTN/OXC
OTN/OXC
KeyFeature1:AIServiceQuality(QoAIS)
TraditionalQoSsystemsprimarilyemphasizesessionandconnectionperformance,lackingcomprehensivesupport
fordiverserequirements;TheQoAISindicatorsystemincorporatessecurity,privacy,autonomy,andresource
overheadasnewevaluationdimensionstoformastandardizedAIservicequalityevaluationsystem.
QoAISGuaranteeMechanism
Smart
Entertainment
SmartLife
SmartCity
Smart
Community
Smart
Industry
AIService
ServiceQoS
TaskQoS
Data
ResourceQoS
AITask
Algorithm
OTN/OXC
Allopticalbase
Computing-NetworkInfrastructure
AppropriateData
collectionandprocessing
closedLbopFeedback
xNB
ControlPlane:ThreeModesofDeepConvergenceofComputingandCommunication
Mode1
Mode2
Mode3
Coordination
xNB
Connectioncontrol
Computingcontrol
Connectioncontrol
Computingcontrol
Convergedcontrol
CCB
CCB
CCB
CEB
CEB
ComputingTaskDataTransmission&Execution
Task1
CEB
CS
CEB
CCB
CEB
CCB
Task3
CCB
CCB
CEB
CEB
Task2
CEB
KeyFeature2:DeepintegrationofAIcomputingandcommunication
DesigninganativeAIprotocolthatintegratescomputingandcommunicationisnecessarytomeetAI‘sconnectivity
anddistributedcomputingserviceneeds.
Itisachievedthroughthreedimensions:ManagementPlane,ControlPlaneandUserPlane
Computingrequirementsfor6GnativeAI
Highcomputationalefficiency
Lowenergy
consumptionand
latency
MeetthedifferentiatedQoAISneeds
CEB:ComputingExecutionBearer
CCB:ComputingConnectionBearer
CS:ComputingSession=CEB+CCB
ManagementPlane
Functionalarrangement
QoSanalysis
CEB
UserPlane
collaborativedesignof
computingandcommunication
protocol
Datagenerationandoptimization
1.Reducethecostofdatacollectionandtransmission;
2.Solveproblemssuchasdifficultyinobtainingtraditionalrealdata;
3.Technology:DataAugmentationinGANs;
PrevalidationofAI
1.Intendedtocompleteperformanceprevalidationwithoutaffecting
networkoperations;
2.Reducepotentialrisksthatdecisionsmayleadto,suchasdeterioratingnetworkperformance;
KeyFeature3:DataGenerationandReliableAI
ThemassivetrainingdatademandandhighriskoftrialanderrorforAIinthenetworkrequirenetworkdigitaltwinstoachieveon-demanddatagenerationandreliableAIandverification
Pre-validation
Iterativeoptimization
Networkstateprediction
AI
vices
NetworkAIRequirements
Digitaltwinmodelingrequirements
ser
Externaldemand
Auto-generatedrequirements
Dataon-demand
collectionand
Requirementsfor
generation
Digitaltwinentity
NetworkDigitalTwin
Networkvirtual
scene
Processeddata
datacollection
andgeneration
Networkdecision
CU
DUAAU
VirtualizationCoreNetwork
CloudbasedRadioAccessNetwork
Radio
physical
network
1
2
Outline
Drivingforcesof6GnativeAI
6GnativeAIandkeyfeatures
36GandAILargeModel
13
AILargeModelforNetwork
TheConvergenceof6GandAILargeModel
AsAIenterstheeraofgeneralintelligence,theemergenceofFoundationModelspromisesaprofoundtransformationintheintegrationof6GandAI
NetworkforAILargeModel
ThenetworkservesasaplatformtosupportorprovideAILargeModelservices
?ProviderichenvironmentaldataforAILargeModel
?Offerintent-basedservicestousers
?Achieveglobalcollaborativecontrolofintelligentterminals
AILargeModelwillenhancemobilenetwork
servicesinaspectssuchasoperations,execution,andverification
Domains
Requirements
ImpactonNetworks
NetworkOperations
Multi-modalMachine
Learning,Language
Understanding,Text
Generation
Small
Network
Maintenance
Non-standardData
Governance,Data
Alignment,Natural
LanguageUnderstanding,
CodeGeneration
Medium
Network
Running
Non-standardData
Governance,Image
Generation,Video
Generation
Large
?DetectingFailuresandGeneratingSolutions
?OrchestratingandSchedulingTaskWorkflows
?PlayingaVitalRoleintheValidationPhase
14
NetworksforAILargeModel
6GnativeAIfacilitatesthetrainingofAIlargemodelbyprovidinglinksanddataservicesduringthetrainingprocess,andsupportstheinferenceprocesswithlinks,computation,andmodeldecomposition/distributionservices
/Processeddata
6GNetworkCloudAIproviders
AILargeModeltrainingoftenneedshigh-speedfiber
opticconnectionsindatacenters,makingradionetworkdeploymentchallenging.
Collectinguserandnetworkdata,preprocessingit,andmanagingtraffictosupportmodeltraining
6Gnetworksprocessdataefficiently,reducingdata
transmissionandimprovingcloudAItrainingformodels
Therequiredspecialdataanalysistechniques?Howtoefficientlyscheduledatainadistributed?
Potential
gains
Futureissues
Features
Services
Dataprocessing
AItrainingservices
Massivedatacollection
UE
Processeddata
Inference
requests
AIinference
CloudAIproviders
AILargeModelrequiresignificantstoragespaceandpowerfulAIinferencechips,whichcannotbemetbyasinglebasestation.
Withpropermodelsegmentation,modelscanbedeployedinwirelessnetworkstoofferAIinferenceservices.
In6Gnetworks,deployingmodelsclosertouserscanreducelatency
Howtobalanceincreasedinferencelatencywithreduced
transmissionlatencyin6Gnetworks?Aretechniqueslikemodelsegmentation,compression,andaccelerationfeasiblefor
models?databeeffectivelyscheduledbetweennodes?15
AIinferenceservices
6GNetwork
UE
?
?
AILargeModelforNetwork
AILargeModelforNetworkfacesignificantchallengesduetotheabundanceofstructureddataandunclearcommonalitiesamongdifferentnetworkproblems,unlikeChatGPT
Exploringinphases,beginningwiththeexplorationofnetworkoperationsaigeneralmodels
Progressingfromsmall-scaletolarge-scaleandfromofflinetoreal-time,ultimatelyinvestigatingthe
feasibilityofunification
Small-scalelarge-scaleunified
Offline
Realtime
smallmodel1
smallmodel2
…
smallmodelN
Scenario-basedoperationmodel
Service-levelrunningmodel
Network-level
runningmodelSingle-systemrunningmodel
?
Operationuniversalmodel
Multi-scenario
universalrunning
model
NetworkAILargeModel
16
Industry-widecollaborativedataopenness
6GANAcollaborateswithmultipleorganizations,includingtheNine
Heavensplatform,toreleasefourmajordatasets,creatinganindustrydata
sharingecosystemtosupportnetworkAIresearch!
Poordata
quality
TheChallengesofNetworkAILargeModel-Data
Networkoperationandmaintenancedataismainlyavailableatminute/hourintervalsfromaconsistentsource,
whilenetworkoperationaldataismorecomplexduetovaryingtimeintervals,standardization,anddatasources,
makingithardertoacquire.
Dataopennessandstandardization
Difficultdataacquisition
IntelligentRANSlicingDataset
CSICompressionFeedbackDataset
Dataopenness
Continuouslycuratingandaccumulatingintelligentnetwork
datasets,opentothepublic,tobuildaseriesofinnovative
smartnetworkecosystems,andsupportresearch
standardization
NetworkAIScheduling
TechnologyResearchDataset
RadioResourceSchedulingDataset
Collaboratewiththeindustrytojointlyformulatenewdata
collectionstandardsan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZJBS 001-2024 城市公共標(biāo)識(shí)系統(tǒng)設(shè)計(jì)規(guī)范
- T-ZSA 230-2024 虛擬數(shù)字人多模態(tài)交互信息規(guī)范
- 二零二五年度荒山土地流轉(zhuǎn)與林業(yè)碳匯項(xiàng)目合作合同
- 二零二五年度企業(yè)合規(guī)管理體系法律服務(wù)合同范本
- 二零二五年度離婚協(xié)議書模板及婚姻關(guān)系終止及財(cái)產(chǎn)分配
- 二零二五年度診所醫(yī)療事故處理及責(zé)任劃分合同
- 二零二五年度養(yǎng)老護(hù)理型住宅正規(guī)房屋出租合同
- 二零二五年度混凝土班組勞務(wù)合作施工安全責(zé)任合同
- 二零二五年度銷售信息保密管理承諾書
- 2025年度耕地租賃與農(nóng)業(yè)科技推廣合同
- 部編版小學(xué)(2024版)小學(xué)道德與法治一年級下冊《有個(gè)新目標(biāo)》-第一課時(shí)教學(xué)課件
- 稅法(第5版) 課件 第13章 印花稅
- 建加油站申請書
- 2024-2025學(xué)年廣州市高二語文上學(xué)期期末考試卷附答案解析
- 少年商學(xué)院《DeepSeek中小學(xué)生使用手冊》
- 2025年山東鋁業(yè)職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2024年教育公共基礎(chǔ)知識(shí)筆記
- 《銷售合同執(zhí)行》課件
- 深夜地鐵7號線施工方案
- 山東2024年山東經(jīng)貿(mào)職業(yè)學(xué)院第二批招聘102人歷年參考題庫(頻考版)含答案解析
- 宮腔球囊止血護(hù)理常規(guī)
評論
0/150
提交評論