中國移動(dòng)研究院陳天驕在全球6G大會(huì)上的演講:6G原生AI無線網(wǎng)絡(luò)與AI大模型 6G Native AI Wireless Network and AI Large Model_第1頁
中國移動(dòng)研究院陳天驕在全球6G大會(huì)上的演講:6G原生AI無線網(wǎng)絡(luò)與AI大模型 6G Native AI Wireless Network and AI Large Model_第2頁
中國移動(dòng)研究院陳天驕在全球6G大會(huì)上的演講:6G原生AI無線網(wǎng)絡(luò)與AI大模型 6G Native AI Wireless Network and AI Large Model_第3頁
中國移動(dòng)研究院陳天驕在全球6G大會(huì)上的演講:6G原生AI無線網(wǎng)絡(luò)與AI大模型 6G Native AI Wireless Network and AI Large Model_第4頁
中國移動(dòng)研究院陳天驕在全球6G大會(huì)上的演講:6G原生AI無線網(wǎng)絡(luò)與AI大模型 6G Native AI Wireless Network and AI Large Model_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

6GNativeAlwirelessNetworkand

AlLargemodel

Tianjiaochen

2023-12

1

2

Outline

Drivingforcesof6GnativeAI

6GnativeAIandkeyfeatures

36GandAILargeModel

2

BusinessneedsAI

CustomersneedAI

DemandforUbiquitousIntelligence

AIhasbecomethecoredrivingforceforanewroundofindustrialtransformation.Theautomation,digitalizationandintelligenceoftheindustryrequireubiquitousintelligence.

NetworkautonomyneedsAI

Operation&maintenance

MedicalRecognition

Securitymonitor

Machinetranslation

Voiceprintrecognition

Emergencycommunication

SmartNavigation

SmartManufacturing

Robotrescue

Customizednetwork

Smartcoverage

PersonalizedRecommend.

Theintegrationof6GandAIincludestwoaspects:"AIforNetwork"

3

and“NetworkforAI"

Performance

AIenhancesnetworkperformance

network

cost

networkoperationandmaintenanceefficiency

TheDrivingForceofAIforNetwork

Mobilecommunicationtechnologyfacesbottlenecks,requiringurgenttechnologicalinnovationand

interdisciplinaryintegration.AIisakeysolutionforenhancingnetworkperformance.

Traditionalcommunicationsystemsfaceperformancebottlenecks

Optimization

Conflictsbetweennetworkoperationefficiency,complexity,andcost

contradictory

triangle

complexity

6Gposesmorechallengingdemandmetrics

9cpbiitisnhancedbyM203

8abiitie8adddbyM

Currenttechnologyfallsshortofmeeting6G'sneeds

Difficultyinestimatinglargerscale

MIMOchannels

Densebasestationdeploymentleads

toincreasedinterference

Morecomplexsystemdesignsleadto

increasedenergyconsumption

Complexroutinginheterogeneous

equipmentnetworks

Diversecommunicationscenario

requirementsarefragmented

airinterface

Moreaccuratechannelinformation

Moreprecisepositioning

Enhancedinterferencecancellationcapabilities

Enhancedenergyefficiency,spectralcapacity

network

Improvedsceneadaptationspeed

Morebalancedtrafficscheduling

Fasternetworkinginterferenceavoidance

Morerefinedbusinessidentification

Moreaccuratefaultlocation

4

5

6GnetworkinherentlyprovidesAIservices

5G

communicationservice

communicationability

TheDrivingForceofNetworkforAI

ITUextends6Gscenariostoubiquitousintelligence.AIneedstobetransformedintonewcapabilitiesandservicesfor6GcommunicationnetworkstoachieveAIaaS

ITUextends6Gscenariostoubiquitousintelligence

GetAIanytime,anywhere

LowlatencyAIinference/training

SupportmobileAI

6G

communicationability

computingability

perceptionabilitydataabilityAImodelability

+

AIservicequality

AIservice

assurance

AIsecurityandprivacyprotection

Scenario-drivenAI

Intelligentdata

analysis

NWDAF

UE

CN

RAN

AIservers

AIforNetworks

Antennaweighttuning

Usermovementprediction

Problem:It‘schallengingtoguaranteereal-time,effective,and

consistentdata.CompletingtheentireAIprocessinvolveshightrialanderrorcosts.

High-speed

intelligentfollowing

NetworksforAI

ServiceOrderTransmission

Real-timemulti-agentcollaboration

Network

Usermovementprediction

CloudAIServiceProvider

UE

ChallengesintheIntegrationof5GNetworkandAI

Fulfilling6GandAIintegrationdemands,theuniversalityandefficiencyofexistingAIdesignmethods

drivenbyscenariousecases,plugins,orgraftsneedtobeimproved.

ExternalorgraftingAI

.AddAIserversorAI-relatednetworkfunctionstothenetwork,suchasNWDAF

.DesignseparateAImodelsforspecificairinterfaceandnetwork

optimizationusecases

Massivetrafficdata

Changingchannelconditions

NetworkManagement

Reducedswitchingperformance

Problem:AImodelshavelowgeneralization,long

developmentcycles,andhighcosts

.CloudAIserviceprovidersprovidebest-effortAIservicesafteruserssubmitorders

SubmitAINetwork

.DesigndifferentAIserviceprocessesfordifferentthird-partyAI

scenarios

InternetofVehicles

smartfactory

XR/VR

Problem:ThenetworkstrugglestorapidlydeployAIservicesfordiversescenarios

Problem:Dataisonlyuploadedtothecloud,makingitdifficultto

6

efficientlyleveragetheubiquitousresourceswithinthenetwork,whichcannotguaranteethequalityandsecurityofAIservices

...

...

Cloud

CloudAIproviders

CN

CN

Trafficanalysis

Trafficanalysis

Antennaadjustment

Antennaadjustment

Movementprediction

Movementprediction

7

6GNativeAIDesignPrinciples

Toachieveubiquitousintelligence,6Gnetworkarchitecturerequires"fourtransformations"

Fromexternaltonativeandintegrated

Frombest-efforttoAlservicequalityguarantee

Cloud

NWDAF

CommunicationQoS

(·)

AIworkflow1

5GExternalAI

6G

NativeAIAIworkflow2

CommunicationQoS

Fromscenariodriventocapabilitydriven

Frommultielementsdecouplingtocollaboration

Fourelementscollaboration

AI

Algorithm

Computing

Communication

()

Data

1

2

Outline

Drivingforcesof6GnativeAI

6GnativeAIandkeyfeatures

36GandAILargeModel

8

Method

6GNativeAInetwork

Challenge:AsthethreefundamentalcomponentsofAI(data,algorithmsandcomputing)havegained

significanceonparwithnetworkconnections,thedesignofthecorrespondingarchitecture,interfaces,andprotocolsshouldspantheentireAIlifecycle.

Dataplane:

Resourcelayer:

provideunderlyingresources

Networkfunctionlayer:

providespecificnetworkfunction/networkservicecapabilities

Applicationandservicelayer:

providecorrespondingsupportfor

customers'businessneeds.

managesnetworkdataandprovidesdataservices

Computingplane:

managescomputingandprovidescomputingservices

Intelligentplane:

providestheoperatingenvironmentforfulllife-cycleofnativeAI.

Unlike5Gnetwork,newdataplane,smartplane,andcomputingplanewillbedefinedin6Gnetwork,andtraditionalcontrolplaneanduserplaneareexpectedtobeextendedaswell.

9

PlatformizedServiceNetwork

Management

&

Orchestration

Task

Management

Computin

g

Connection

UnifiedIPcomputing-

networkbase

TaskControl

OTN/OXC

OTN/OXC

KeyFeature1:AIServiceQuality(QoAIS)

TraditionalQoSsystemsprimarilyemphasizesessionandconnectionperformance,lackingcomprehensivesupport

fordiverserequirements;TheQoAISindicatorsystemincorporatessecurity,privacy,autonomy,andresource

overheadasnewevaluationdimensionstoformastandardizedAIservicequalityevaluationsystem.

QoAISGuaranteeMechanism

Smart

Entertainment

SmartLife

SmartCity

Smart

Community

Smart

Industry

AIService

ServiceQoS

TaskQoS

Data

ResourceQoS

AITask

Algorithm

OTN/OXC

Allopticalbase

Computing-NetworkInfrastructure

AppropriateData

collectionandprocessing

closedLbopFeedback

xNB

ControlPlane:ThreeModesofDeepConvergenceofComputingandCommunication

Mode1

Mode2

Mode3

Coordination

xNB

Connectioncontrol

Computingcontrol

Connectioncontrol

Computingcontrol

Convergedcontrol

CCB

CCB

CCB

CEB

CEB

ComputingTaskDataTransmission&Execution

Task1

CEB

CS

CEB

CCB

CEB

CCB

Task3

CCB

CCB

CEB

CEB

Task2

CEB

KeyFeature2:DeepintegrationofAIcomputingandcommunication

DesigninganativeAIprotocolthatintegratescomputingandcommunicationisnecessarytomeetAI‘sconnectivity

anddistributedcomputingserviceneeds.

Itisachievedthroughthreedimensions:ManagementPlane,ControlPlaneandUserPlane

Computingrequirementsfor6GnativeAI

Highcomputationalefficiency

Lowenergy

consumptionand

latency

MeetthedifferentiatedQoAISneeds

CEB:ComputingExecutionBearer

CCB:ComputingConnectionBearer

CS:ComputingSession=CEB+CCB

ManagementPlane

Functionalarrangement

QoSanalysis

CEB

UserPlane

collaborativedesignof

computingandcommunication

protocol

Datagenerationandoptimization

1.Reducethecostofdatacollectionandtransmission;

2.Solveproblemssuchasdifficultyinobtainingtraditionalrealdata;

3.Technology:DataAugmentationinGANs;

PrevalidationofAI

1.Intendedtocompleteperformanceprevalidationwithoutaffecting

networkoperations;

2.Reducepotentialrisksthatdecisionsmayleadto,suchasdeterioratingnetworkperformance;

KeyFeature3:DataGenerationandReliableAI

ThemassivetrainingdatademandandhighriskoftrialanderrorforAIinthenetworkrequirenetworkdigitaltwinstoachieveon-demanddatagenerationandreliableAIandverification

Pre-validation

Iterativeoptimization

Networkstateprediction

AI

vices

NetworkAIRequirements

Digitaltwinmodelingrequirements

ser

Externaldemand

Auto-generatedrequirements

Dataon-demand

collectionand

Requirementsfor

generation

Digitaltwinentity

NetworkDigitalTwin

Networkvirtual

scene

Processeddata

datacollection

andgeneration

Networkdecision

CU

DUAAU

VirtualizationCoreNetwork

CloudbasedRadioAccessNetwork

Radio

physical

network

1

2

Outline

Drivingforcesof6GnativeAI

6GnativeAIandkeyfeatures

36GandAILargeModel

13

AILargeModelforNetwork

TheConvergenceof6GandAILargeModel

AsAIenterstheeraofgeneralintelligence,theemergenceofFoundationModelspromisesaprofoundtransformationintheintegrationof6GandAI

NetworkforAILargeModel

ThenetworkservesasaplatformtosupportorprovideAILargeModelservices

?ProviderichenvironmentaldataforAILargeModel

?Offerintent-basedservicestousers

?Achieveglobalcollaborativecontrolofintelligentterminals

AILargeModelwillenhancemobilenetwork

servicesinaspectssuchasoperations,execution,andverification

Domains

Requirements

ImpactonNetworks

NetworkOperations

Multi-modalMachine

Learning,Language

Understanding,Text

Generation

Small

Network

Maintenance

Non-standardData

Governance,Data

Alignment,Natural

LanguageUnderstanding,

CodeGeneration

Medium

Network

Running

Non-standardData

Governance,Image

Generation,Video

Generation

Large

?DetectingFailuresandGeneratingSolutions

?OrchestratingandSchedulingTaskWorkflows

?PlayingaVitalRoleintheValidationPhase

14

NetworksforAILargeModel

6GnativeAIfacilitatesthetrainingofAIlargemodelbyprovidinglinksanddataservicesduringthetrainingprocess,andsupportstheinferenceprocesswithlinks,computation,andmodeldecomposition/distributionservices

/Processeddata

6GNetworkCloudAIproviders

AILargeModeltrainingoftenneedshigh-speedfiber

opticconnectionsindatacenters,makingradionetworkdeploymentchallenging.

Collectinguserandnetworkdata,preprocessingit,andmanagingtraffictosupportmodeltraining

6Gnetworksprocessdataefficiently,reducingdata

transmissionandimprovingcloudAItrainingformodels

Therequiredspecialdataanalysistechniques?Howtoefficientlyscheduledatainadistributed?

Potential

gains

Futureissues

Features

Services

Dataprocessing

AItrainingservices

Massivedatacollection

UE

Processeddata

Inference

requests

AIinference

CloudAIproviders

AILargeModelrequiresignificantstoragespaceandpowerfulAIinferencechips,whichcannotbemetbyasinglebasestation.

Withpropermodelsegmentation,modelscanbedeployedinwirelessnetworkstoofferAIinferenceservices.

In6Gnetworks,deployingmodelsclosertouserscanreducelatency

Howtobalanceincreasedinferencelatencywithreduced

transmissionlatencyin6Gnetworks?Aretechniqueslikemodelsegmentation,compression,andaccelerationfeasiblefor

models?databeeffectivelyscheduledbetweennodes?15

AIinferenceservices

6GNetwork

UE

?

?

AILargeModelforNetwork

AILargeModelforNetworkfacesignificantchallengesduetotheabundanceofstructureddataandunclearcommonalitiesamongdifferentnetworkproblems,unlikeChatGPT

Exploringinphases,beginningwiththeexplorationofnetworkoperationsaigeneralmodels

Progressingfromsmall-scaletolarge-scaleandfromofflinetoreal-time,ultimatelyinvestigatingthe

feasibilityofunification

Small-scalelarge-scaleunified

Offline

Realtime

smallmodel1

smallmodel2

smallmodelN

Scenario-basedoperationmodel

Service-levelrunningmodel

Network-level

runningmodelSingle-systemrunningmodel

?

Operationuniversalmodel

Multi-scenario

universalrunning

model

NetworkAILargeModel

16

Industry-widecollaborativedataopenness

6GANAcollaborateswithmultipleorganizations,includingtheNine

Heavensplatform,toreleasefourmajordatasets,creatinganindustrydata

sharingecosystemtosupportnetworkAIresearch!

Poordata

quality

TheChallengesofNetworkAILargeModel-Data

Networkoperationandmaintenancedataismainlyavailableatminute/hourintervalsfromaconsistentsource,

whilenetworkoperationaldataismorecomplexduetovaryingtimeintervals,standardization,anddatasources,

makingithardertoacquire.

Dataopennessandstandardization

Difficultdataacquisition

IntelligentRANSlicingDataset

CSICompressionFeedbackDataset

Dataopenness

Continuouslycuratingandaccumulatingintelligentnetwork

datasets,opentothepublic,tobuildaseriesofinnovative

smartnetworkecosystems,andsupportresearch

standardization

NetworkAIScheduling

TechnologyResearchDataset

RadioResourceSchedulingDataset

Collaboratewiththeindustrytojointlyformulatenewdata

collectionstandardsan

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論