版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省如東縣重點中學2024學年中考聯(lián)考數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達B點,則小剛上升了()A.米 B.米 C.米 D.米2.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.3.下列各式計算正確的是()A.a2+2a3=3a5 B.a?a2=a3 C.a6÷a2=a3 D.(a2)3=a54.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.5.據(jù)媒體報道,我國最新研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,這個數(shù)用科學記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1066.如圖,中,,,將繞點逆時針旋轉得到,使得,延長交于點,則線段的長為()A.4 B.5 C.6 D.77.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°8.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.9.如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數(shù)關系的圖象是()A. B. C. D.10.若關于x的不等式組只有5個整數(shù)解,則a的取值范圍()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若點(,1)與(﹣2,b)關于原點對稱,則=_______.12.計算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,歸納各計算結果中的個位數(shù)字規(guī)律,猜測22019﹣1的個位數(shù)字是_____.13.分解因式:xy2﹣2xy+x=_____.14.如圖,二次函數(shù)y=a(x﹣2)2+k(a>0)的圖象過原點,與x軸正半軸交于點A,矩形OABC的頂點C的坐標為(0,﹣2),點P為x軸上任意一點,連結PB、PC.則△PBC的面積為_____.15.方程的解是__________.16.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.三、解答題(共8題,共72分)17.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.18.(8分)已知:如圖,∠ABC,射線BC上一點D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.19.(8分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數(shù)圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數(shù)圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數(shù)關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?20.(8分)春節(jié)期間,收發(fā)微信紅包已經(jīng)成為各類人群進行交流聯(lián)系、增強感情的一部分,小王在2017年春節(jié)共收到紅包400元,2019年春節(jié)共收到紅包484元,求小王在這兩年春節(jié)收到紅包的年平均增長率.21.(8分)解方程組:.22.(10分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.23.(12分)在中,,以為直徑的圓交于,交于.過點的切線交的延長線于.求證:是的切線.24.計算:;解方程:
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
利用銳角三角函數(shù)關系即可求出小剛上升了的高度.【題目詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【題目點撥】此題主要考查了解直角三角形的應用,根據(jù)題意構造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關系是解題關鍵.2、B【解題分析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質,含30度直角三角形的性質,以及弧長公式,熟練掌握切線的性質是解答本題的關鍵.3、B【解題分析】
根據(jù)冪的乘方,底數(shù)不變指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,對各選項分析判斷利用排除法求解【題目詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【題目點撥】此題考查同底數(shù)冪的乘法,冪的乘方與積的乘方,解題的關鍵在于掌握運算法則.4、C【解題分析】試題分析:根據(jù)軸對稱圖形及中心對稱圖形的定義,結合所給圖形進行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.5、C【解題分析】試題分析:204000米/分,這個數(shù)用科學記數(shù)法表示2.04×105,故選C.考點:科學記數(shù)法—表示較大的數(shù).6、B【解題分析】
先利用已知證明,從而得出,求出BD的長度,最后利用求解即可.【題目詳解】故選:B.【題目點撥】本題主要考查相似三角形的判定及性質,掌握相似三角形的性質是解題的關鍵.7、A【解題分析】
由AB∥CD,根據(jù)兩直線平行,內錯角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【題目詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【題目點撥】本題考查了平行線的性質,解題的關鍵是掌握平行線的性質進行解答.8、A【解題分析】
由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【題目詳解】點P在拋物線上,設點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.9、B【解題分析】
△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數(shù)關系的圖象.【題目詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數(shù)關系的圖象是B;故選B.【題目點撥】本題考查了動點函數(shù)圖象問題,用到的知識點是三角形的面積、一次函數(shù),在圖象中應注意自變量的取值范圍.10、A【解題分析】
分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數(shù)解,則不等式組的解集為3-2a<x<20,且整數(shù)解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【題目詳解】解①得x<20
解②得x>3-2a,
∵不等式組只有5個整數(shù)解,
∴不等式組的解集為3-2a<x<20,
∴14≤3-2a<15,故選:A【題目點撥】本題主要考查對不等式的性質,解一元一次不等式,一元一次不等式組的整數(shù)解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解題分析】
∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為.考點:關于原點對稱的點的坐標.12、1【解題分析】
觀察給出的數(shù),發(fā)現(xiàn)個位數(shù)是循環(huán)的,然后再看2019÷4的余數(shù),即可求解.【題目詳解】由給出的這組數(shù)21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,個位數(shù)字1,3,1,5循環(huán)出現(xiàn),四個一組,2019÷4=504…3,∴22019﹣1的個位數(shù)是1.故答案為1.【題目點撥】本題考查數(shù)的循環(huán)規(guī)律,確定循環(huán)規(guī)律,找準余數(shù)是解題的關鍵.13、x(y-1)2【解題分析】分析:先提公因式x,再用完全平方公式把繼續(xù)分解.詳解:=x()=x()2.故答案為x()2.點睛:本題考查了因式分解,有公因式先提公因式,然后再用公式法繼續(xù)分解,因式分解必須分解到每個因式都不能再分解為止.14、4【解題分析】
根據(jù)二次函數(shù)的對稱性求出點A的坐標,從而得出BC的長度,根據(jù)點C的坐標得出三角形的高線,從而得出答案.【題目詳解】∵二次函數(shù)的對稱軸為直線x=2,∴點A的坐標為(4,0),∵點C的坐標為(0,-2),∴點B的坐標為(4,-2),∴BC=4,則.【題目點撥】本題主要考查的是二次函數(shù)的對稱性,屬于基礎題型.理解二次函數(shù)的軸對稱性是解決這個問題的關鍵.15、.【解題分析】
根據(jù)解分式方程的步驟依次計算可得.【題目詳解】解:去分母,得:,解得:,當時,,所以是原分式方程的解,故答案為:.【題目點撥】本題主要考查解分式方程,解題的關鍵是熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論.16、【解題分析】
如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.三、解答題(共8題,共72分)17、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解題分析】
(1)利用平行線的性質及中點的定義,可利用AAS證得結論;
(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【題目詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點,E是AD的中點,
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【題目點撥】本題主要考查菱形的性質及判定,利用全等三角形的性質證得AF=CD是解題的關鍵,注意菱形面積公式的應用.18、作圖見解析.【解題分析】
由題意可知,先作出∠ABC的平分線,再作出線段BD的垂直平分線,交點即是P點.【題目詳解】∵點P到∠ABC兩邊的距離相等,∴點P在∠ABC的平分線上;∵線段BD為等腰△PBD的底邊,∴PB=PD,∴點P在線段BD的垂直平分線上,∴點P是∠ABC的平分線與線段BD的垂直平分線的交點,如圖所示:【題目點撥】此題主要考查了尺規(guī)作圖,正確把握角平分線的性質和線段垂直平分線的性質是解題的關鍵.19、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解題分析】
(1)根據(jù)圖①可得出總工作量為370件,根據(jù)圖②可得出乙完成了220件,從而可得出甲5小時完成的工作量;(2)設y甲的函數(shù)解析式為y=kx+b,將點(0,0),(5,1)代入即可得出y甲與t的函數(shù)關系式;設y乙的函數(shù)解析式為y=mx(0≤t≤2),y=cx+d(2<t≤5),將點的坐標代入即可得出函數(shù)解析式;(3)聯(lián)立y甲與改進后y乙的函數(shù)解析式即可得出答案.【題目詳解】(1)由圖①得,總工作量為370件,由圖②可得出乙完成了220件,故甲5時完成的工作量是1.(2)設y甲的函數(shù)解析式為y=kt(k≠0),把點(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改進前,甲乙每小時完成50件,所以乙每小時完成20件,當0≤t≤2時,可得y乙=20t;當2<t≤5時,設y=ct+d,將點(2,40),(5,220)代入可得:,解得:,故y乙=60t﹣80(2<t≤5).綜上可得:y甲=30t(0≤t≤5);y乙=.(3)由題意得:,解得:t=,故改進后﹣2=小時后乙與甲完成的工作量相等.【題目點撥】本題考查了一次函數(shù)的應用,解題的關鍵是能讀懂函數(shù)圖象所表示的信息,另外要熟練掌握待定系數(shù)法求函數(shù)解析式的知識.20、小王在這兩年春節(jié)收到的年平均增長率是10【解題分析】
增長后的量=增長前的量×(1+增長率),2018年收到微信紅包金額400(1+x)元,在2018年的基礎上再增長x,就是2019年收到微信紅包金額400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【題目詳解】解:設小王在這兩年春節(jié)收到的紅包的年平均增長率是x.依題意得:400解得x1答:小王在這兩年春節(jié)收到的年平均增長率是10【題目點撥】本題考查了一元二次方程的應用.對于增長率問題,增長前的量×(1+年平均增長率)年數(shù)=增長后的量.21、;;.【解題分析】分析:把原方程組中的第二個方程通過分解因式降次,轉化為兩個一次方程,再分別和第一方程組合成兩個新的方程組,分別解這兩個新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點睛:本題考查的是二元二次方程組的解法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西貴港市覃塘區(qū)2023-2024學年七年級下學期4月期中考試英語試題(含答案)
- 開放作文之觀點看法類-2024年中考英語寫作??碱}型專項突破
- 視頻系統(tǒng)的實時性優(yōu)化
- 宜君養(yǎng)豬場改擴建項目可行性研究報告
- 成都2024年07版小學三年級下冊英語第3單元真題試卷
- 重慶2024年09版小學五年級英語第六單元期中試卷
- 名著閱讀(講練)-2023年部編版中考語文一輪復習(原卷版)
- 2024年醫(yī)用液氧貯槽項目投資申請報告代可行性研究報告
- 2023年固態(tài)地振動強度記錄儀投資申請報告
- 三維數(shù)字內容制作-三維動畫毛發(fā)制作流程規(guī)范
- 茶多酚性質功效及應用
- 野生動物管理學智慧樹知到答案章節(jié)測試2023年東北林業(yè)大學
- 平行四邊形的面積學習單
- 函數(shù)的零點與方程的解(說課稿)
- 金融服務禮儀講義
- 圖像質量調試工具使用指南
- 期杜仕明寫作保分-h課前crack your grammar puzzles once and for all
- GA 1551.2-2019石油石化系統(tǒng)治安反恐防范要求第2部分:煉油與化工企業(yè)
- 三九企業(yè)集團商標權資產評估報告書
- 安全生產標準化培訓(醫(yī)院)課件
- 雅魯藏布江大拐彎巨型水電站規(guī)劃方案
評論
0/150
提交評論