版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2.4平面向量的數(shù)量積2.4.1平面向量數(shù)量積的物理背景及其含義整體設(shè)計(jì)教學(xué)分析前面已經(jīng)知道,向量的線性運(yùn)算有非常明確的幾何意義,因此利用向量運(yùn)算可以討論一些幾何元素的位置關(guān)系.既然向量可以進(jìn)行加減運(yùn)算,一個(gè)自然的想法是兩個(gè)向量能否做乘法運(yùn)算呢?如果能,運(yùn)算結(jié)果應(yīng)該是什么呢?另外,距離和角是刻畫幾何元素(點(diǎn)、線、面)之間度量關(guān)系的基本量.我們需要一個(gè)向量運(yùn)算來反映向量的長(zhǎng)度和兩個(gè)向量間夾角的關(guān)系.眾所周知,向量概念的引入與物理學(xué)的研究密切相關(guān),物理學(xué)家很早就知道,如果一個(gè)物體在力F的作用下產(chǎn)生位移s(如圖1),那么力F所做的功圖1W=|F||s|cosθ功W是一個(gè)數(shù)量,其中既涉及“長(zhǎng)度”,也涉及“角”,而且只與向量F,s有關(guān).熟悉的數(shù)的運(yùn)算啟發(fā)我們把上式解釋為兩個(gè)向量的運(yùn)算,從而引進(jìn)向量的數(shù)量積的定義a·b=|a||b|cosθ.這是一個(gè)好定義,它不僅滿足人們熟悉的運(yùn)算律(如交換律、分配律等),而且還可以用它來更加簡(jiǎn)潔地表述幾何中的許多結(jié)果.向量的數(shù)量積是一種新的向量運(yùn)算,與向量的加法、減法、數(shù)乘運(yùn)算一樣,它也有明顯的物理意義、幾何意義.但與向量的線性運(yùn)算不同的是,它的運(yùn)算結(jié)果不是向量而是數(shù)量.三維目標(biāo)1.通過經(jīng)歷探究過程,掌握平面向量的數(shù)量積及其幾何意義.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律.2.了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問題,并掌握向量垂直的條件.3.通過問題的解決,培養(yǎng)學(xué)生觀察問題、分析問題和解決問題的實(shí)際操作能力;培養(yǎng)學(xué)生的交流意識(shí)、合作精神;培養(yǎng)學(xué)生敘述表達(dá)自己解題思路和探索問題的能力.重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):平面向量數(shù)量積的定義.教學(xué)難點(diǎn):平面向量數(shù)量積的定義及其運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用.課時(shí)安排1課時(shí)教學(xué)過程導(dǎo)入新課思路1.我們前面知道向量概念的原型就是物理中的力、速度、位移以及幾何中的有向線段等概念,向量是既有大小、又有方向的量,它與物理學(xué)中的力學(xué)、運(yùn)動(dòng)學(xué)等有著天然的聯(lián)系,將向量這一工具應(yīng)用到物理中,可以使物理題解答更簡(jiǎn)捷、更清晰,并且向量知識(shí)不僅是解決物理許多問題的有利工具,而且用數(shù)學(xué)的思想方法去審視相關(guān)物理現(xiàn)象,研究相關(guān)物理問題,可使我們對(duì)物理問題認(rèn)識(shí)更深刻.物理中有許多量,比如力、速度、加速度、位移等都是向量,這些物理現(xiàn)象都可以用向量來研究.在物理課中,我們學(xué)過功的概念,即如果一個(gè)物體在力F的作用下產(chǎn)生位移s,那么力F所做的功W可由下式計(jì)算:W=|F||s|cosθ其中θ是F與s的夾角.我們知道力和位移都是向量,而功是一個(gè)標(biāo)量(數(shù)量).故從力所做的功出發(fā),我們就順其自然地引入向量數(shù)量積的概念.思路2.前面我們已學(xué)過,任意的兩個(gè)向量都可以進(jìn)行加減運(yùn)算,并且兩個(gè)向量的和與差仍是一個(gè)向量.我們結(jié)合任意的兩個(gè)實(shí)數(shù)之間可以進(jìn)行加減乘除(除數(shù)不為零)運(yùn)算,就自然地會(huì)想到,任意的兩個(gè)向量是否可以進(jìn)行乘法運(yùn)算呢?如果能,其運(yùn)算結(jié)果是什么呢?推進(jìn)新課新知探究提出問題①a·b的運(yùn)算結(jié)果是向量還是數(shù)量?它的名稱是什么?②由所學(xué)知識(shí)可以知道,任何一種運(yùn)算都有其相應(yīng)的運(yùn)算律,數(shù)量積是一種向量的乘法運(yùn)算,它是否滿足實(shí)數(shù)的乘法運(yùn)算律?③我們知道,對(duì)任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.對(duì)任意向量a、b,是否也有下面類似的結(jié)論?(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.活動(dòng):已知兩個(gè)非零向量a與b,我們把數(shù)量|a||b|cosθ叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即a·b=|a||b|cosθ(0≤θ≤π).其中θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.如圖2為兩向量數(shù)量積的關(guān)系,并且可以知道向量夾角的范圍是0°≤θ≤180°.圖2在教師與學(xué)生一起探究的活動(dòng)中,應(yīng)特別點(diǎn)撥引導(dǎo)學(xué)生注意:(1)兩個(gè)非零向量的數(shù)量積是個(gè)數(shù)量,而不是向量,它的值為兩向量的模與兩向量夾角的余弦的乘積;(2)零向量與任一向量的數(shù)量積為0,即a·0=0;(3)符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替;(4)當(dāng)0≤θ<時(shí)cosθ>0,從而a·b>0;當(dāng)<θ≤π時(shí),cosθ<0,從而a·b<0.與學(xué)生共同探究并證明數(shù)量積的運(yùn)算律.已知a,b,c和實(shí)數(shù)λ,則向量的數(shù)量積滿足下列運(yùn)算律:①a·b=b·a(交換律);②(λa)·b=λ(a·b)=a·(λb)(數(shù)乘結(jié)合律);③(a+b)·c=a·c+b·c(分配律).特別是:(1)當(dāng)a≠0時(shí),由a·b=0不能推出b一定是零向量.這是因?yàn)槿我慌ca垂直的非零向量b,都有a·b=0.圖3(2)已知實(shí)數(shù)a、b、c(b≠0),則ab=bca=c.但對(duì)向量的數(shù)量積,該推理不正確,即a·b=b·c不能推出a=c.由圖3很容易看出,雖然a·b=b·c,但a≠c.(3)對(duì)于實(shí)數(shù)a、b、c有(a·b)c=a(b·c);但對(duì)于向量a、b、c,(a·b)c=a(b·c)不成立.這是因?yàn)?a·b)c表示一個(gè)與c共線的向量,而a(b·c)表示一個(gè)與a共線的向量,而c與a不一定共線,所以(a·b)c=a(b·c)不成立.討論結(jié)果:①是數(shù)量,叫數(shù)量積.②數(shù)量積滿足a·b=b·a(交換律);(λa)·b=λ(a·b)=a·(λb)(數(shù)乘結(jié)合律);(a+b)·c=a·c+b·c(分配律).③(1)(a+b)2=(a+b)·(a+b)=a·b+a·b+b·a+b·b=a2+2a·b+b2;(2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.提出問題①如何理解向量的投影與數(shù)量積?它們與向量之間有什么關(guān)系?②能用“投影”來解釋數(shù)量積的幾何意義嗎?活動(dòng):教師引導(dǎo)學(xué)生來總結(jié)投影的概念,可以結(jié)合“探究”,讓學(xué)生用平面向量的數(shù)量積的定義,從數(shù)與形兩個(gè)角度進(jìn)行探索研究.教師給出圖形并作結(jié)論性的總結(jié),提出注意點(diǎn)“投影”的概念,如圖4.圖4定義:|b|cosθ叫做向量b在a方向上的投影.并引導(dǎo)學(xué)生思考:1°投影也是一個(gè)數(shù)量,不是向量;2°當(dāng)θ為銳角時(shí)投影為正值;當(dāng)θ為鈍角時(shí)投影為負(fù)值;當(dāng)θ為直角時(shí)投影為0;當(dāng)θ=0°時(shí)投影為|b|;當(dāng)θ=180°時(shí)投影為-|b|.教師結(jié)合學(xué)生對(duì)“投影”的理解,讓學(xué)生總結(jié)出向量的數(shù)量積的幾何意義:數(shù)量積a·b等于a的長(zhǎng)度與b在a方向上投影|b|cosθ的乘積.讓學(xué)生思考:這個(gè)投影值可正、可負(fù),也可為零,所以我們說向量的數(shù)量積的結(jié)果是一個(gè)實(shí)數(shù).教師和學(xué)生共同總結(jié)兩個(gè)向量的數(shù)量積的性質(zhì):設(shè)a、b為兩個(gè)非零向量,e是與b同向的單位向量.1°e·a=a·e=|a|cosθ.2°a⊥ba·b=0.3°當(dāng)a與b同向時(shí),a·b=|a||b|;當(dāng)a與b反向時(shí),a·b=-|a||b|.特別地a·a=|a|2或|a|=.4°cosθ=.5°|a·b|≤|a||b|.上述性質(zhì)要求學(xué)生結(jié)合數(shù)量積的定義自己嘗試推證,教師給予必要的補(bǔ)充和提示,在推導(dǎo)過程中理解并記憶這些性質(zhì).討論結(jié)果:①略(見活動(dòng)).②向量的數(shù)量積的幾何意義為數(shù)量積a·b等于a的長(zhǎng)度與b在a方向上投影|b|cosθ的乘積.應(yīng)用示例思路1例1已知平面上三點(diǎn)A、B、C滿足||=2,||=1,||=,求·+·+的值.活動(dòng):教師引導(dǎo)學(xué)生利用向量的數(shù)量積并結(jié)合兩向量的夾角來求解,先分析題設(shè)然后找到所需條件.因?yàn)橐阎?、、的長(zhǎng)度,要求得兩兩之間的數(shù)量積,必須先求出兩兩之間的夾角.結(jié)合勾股定理可以注意到△A是直角三角形,然后可利用數(shù)形結(jié)合來求解結(jié)果.解:由已知,||2+||2=||2,所以△ABC是直角三角形.而且∠ACB=90°,從而sin∠ABC=,sin∠BAC=.∴∠ABC=60°,∠BAC=30°.∴與的夾角為120°,與的夾角為90°,與的夾角為150°.故·+·+·=2×1×cos120°+1×cos90°+×2cos150°=-4.點(diǎn)評(píng):確定兩個(gè)向量的夾角,應(yīng)先平移向量,使它們的起點(diǎn)相同,再考察其角的大小,而不是簡(jiǎn)單地看成兩條線段的夾角,如例題中與的夾角是120°,而不是60°.變式訓(xùn)練已知|a|=6,|b|=4,a與b的夾角為60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a·a-a·b-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cos60°-6×42=-72.例2已知|a|=3,|b|=4,且a與b不共線,當(dāng)k為何值時(shí),向量a+kb與a-kb互相垂直?解:a+kb與a-kb互相垂直的條件是(a+kb)·(a-kb)=0,即a2-k2b2=0.∵a2=32=9,b2=42=16,∴9-16k2=0.∴k=±.也就是說,當(dāng)k=±時(shí),a+kb與a-kb互相垂直.點(diǎn)評(píng):本題主要考查向量的數(shù)量積性質(zhì)中垂直的充要條件.變式訓(xùn)練已知向量a、b滿足:a2=9,a·b=-12,求|b|的取值范圍.解:∵|a|2=a2=9,∴|a|=3.又∵a·b=-12,∴|a·b|=12.∵|a·b|≤|a||b|,∴12≤3|b|,|b|≥4.故|b|的取值范圍是[4,+∞).思路2例1已知在四邊形ABCD中,=a,=b,=c,=d,且a·b=c·d=b·c=d·a,試問四邊形ABCD的形狀如何?解:∵+++=0,即a+b+c+d=0,∴a+b=-(c+d).由上可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又∵a·b=c·d,故a2+b2=c2+d2.同理可得a2+d2=b2+c2.由上兩式可得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA,∴ABCD是平行四邊形.故=,即a=-c.又a·b=b·c=-a·b,即a·b=0,∴a⊥b,即⊥.綜上所述,ABCD是矩形.點(diǎn)評(píng):本題考查的是向量數(shù)量積的性質(zhì)應(yīng)用,利用向量的數(shù)量積解決有關(guān)垂直問題,然后結(jié)合四邊形的特點(diǎn)進(jìn)而判斷四邊形的形狀.例2已知a,b是兩個(gè)非零向量,且|a|-|b|=|a+b|,求向量b與a-b的夾角.活動(dòng):教師引導(dǎo)學(xué)生利用向量減法的平行四邊形法則,畫出以a,b為鄰邊的ABCD,若=a,=b,則=a+b,=a-b.由|a|-|b|=|a+b|,可知∠ABC=60°,b與所成角是150°.我們還可以利用數(shù)量積的運(yùn)算,得出向量b與a-b的夾角,為了鞏固數(shù)量積的有關(guān)知識(shí),我們采用另外一種角度來思考問題,教師給予必要的點(diǎn)撥和指導(dǎo),即由cos〈b,a-b〉=作為切入點(diǎn),進(jìn)行求解.解:∵|b|=|a+b|,|b|=|a|,∴b2=(a+b)2.∴|b|2=|a|2+2a·b+|b|2.∴a·b=-|b|2.而b·(a-b)=b·a-b2=|b|2-|b|2=|b|2,①由(a-b)2=a2-2a·b+b2=|b|2-2×()|b|2+|b|2=3|b|2,而|a-b|2=(a-b)2=3|b|2,∴|a-b|=3|b|.②∵cos〈b,a-b〉=代入①②,得cos〈b,a-b〉=-.又∵〈b,a-b〉∈[0,π],∴〈b,a-b〉=.點(diǎn)評(píng):本題考查的是利用平面向量的數(shù)量積解決有關(guān)夾角問題,解完后教師及時(shí)引導(dǎo)學(xué)生對(duì)本解法進(jìn)行反思、總結(jié)、體會(huì).變式訓(xùn)練設(shè)向量c=ma+nb(m,n∈R),已知|a|=2,|c|=4,a⊥c,b·c=-4,且b與c的夾角為120°,求m,n的值.解:∵a⊥c,∴a·c=0.又c=ma+nb,∴c·c=(ma+nb)·c,即|c|2=ma·c+nb·c.∴|c|2=nb·c.由已知|c|2=16,b·c=-4,∴16=-4n.∴n=-4.從而c=ma-4b.∵b·c=|b||c|cos120°=-4,∴|b|·4·()=-4.∴|b|=2.由c=ma-4b,得a·c=ma2-4a·b,∴8m-4a·b=0,即a·b=2m.①再由c=ma-4b,得b·c=ma·b-4b2.∴ma·b-16=-4,即ma·b=12.②聯(lián)立①②得2m2=12,即m2=6.∴m=±.故m=±,n=-4.知能訓(xùn)練課本本節(jié)練習(xí).解答:1.p·q=24.2.a·b<0時(shí),△ABC為鈍角三角形;a·b=0時(shí),△ABC為直角三角形.3.投影分別為3,0,-3.圖略.課堂小結(jié)1.先由學(xué)生回顧本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí),數(shù)量積的定義、幾何意義,數(shù)量積的重要性質(zhì),數(shù)量積的運(yùn)算律.2.教師與學(xué)生總結(jié)本節(jié)學(xué)習(xí)的數(shù)學(xué)方法,歸納類比、定義法、數(shù)形結(jié)合等.在領(lǐng)悟數(shù)學(xué)思想方法的同時(shí),鼓勵(lì)學(xué)生多角度、發(fā)散性地思考問題,并鼓勵(lì)學(xué)生進(jìn)行一題多解.作業(yè)課本習(xí)題2.4A組2、3、4.設(shè)計(jì)感想本節(jié)的重要性是顯而易見的,但本節(jié)有幾個(gè)常見思維誤區(qū):不能正確理解向量夾角的定義,兩個(gè)向量夾角的定義是指同一點(diǎn)出發(fā)的兩個(gè)向量所構(gòu)成的較小的非負(fù)角,因此向量夾角定義理解不清而造成解題錯(cuò)誤是一些常見的誤區(qū).同時(shí)利用向量的數(shù)量積不但可以解決兩向量垂直問題,而且還可以解決兩向量共線問題,要深刻理解兩向量共線、垂直的充要條件,應(yīng)用的時(shí)候才能得心應(yīng)手.下課啦,咱們來聽個(gè)小故事吧:活動(dòng)目的:教育學(xué)生懂得“水”這一寶貴資源對(duì)于我們來說是極為珍貴的,每個(gè)人都要保護(hù)它,做到節(jié)約每一滴水,造福子孫萬代。
活動(dòng)過程:
1.主持人上場(chǎng),神秘地說:“我讓大家猜個(gè)謎語,你們?cè)敢鈫??”大家回答:“愿意!?/p>
主持人口述謎語:
“雙手抓不起,一刀劈不開,
煮飯和洗衣,都要請(qǐng)它來?!?/p>
主持人問:“誰知道這是什么?”生答:“水!”
一生戴上水的頭飾上場(chǎng)說:“我就是同學(xué)們猜到的水。聽大家說,我的用處可大了,是真的嗎?”
主持人:我宣布:“水”是萬物之源主題班會(huì)現(xiàn)在開始。
水說:“同學(xué)們,你們知道我有多重要嗎?”齊答:“知道?!?/p>
甲:如果沒有水,我們?nèi)祟惥蜔o法生存。
小熊說:我們動(dòng)物可喜歡你了,沒有水我們會(huì)死掉的。
花說:我們花草樹木更喜歡和你做朋友,沒有水,我們?cè)缇涂菟懒?,就不能為美化環(huán)境做貢獻(xiàn)了。
主持人:下面請(qǐng)聽快板《水的用處真叫大》
竹板一敲來說話,水的用處真叫大;
洗衣服,洗碗筷,洗臉洗手又洗腳,
煮飯洗菜又沏茶,生活處處離不開它。
栽小樹,種莊稼,農(nóng)民伯伯把它夸;
魚兒河馬大對(duì)蝦,日日夜夜不離它;
采煤發(fā)電要靠它,京城美化更要它。
主持人:同學(xué)們,聽完了這個(gè)快板,你們說水的用處大不大?
甲說:看了他們的快板表演,我知道日常生活種離不了水。
乙說:看了表演后,我知道水對(duì)莊稼、植物是非常重要的。
丙說:我還知道水對(duì)美化城市起很大作用。
2.主持人:水有這么多用處,你們?cè)撛鯓幼瞿兀?/p>
(1)(生):我要節(jié)約用水,保護(hù)水源。
(2)(生):我以前把水壺剩的水隨便就到掉很不對(duì),以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前幾天,我看到了學(xué)校電視里轉(zhuǎn)播的“水日談水”的節(jié)目,很受教育,同學(xué)們看得可認(rèn)真了,知道了我們北京是個(gè)缺水城市,我們?cè)俨荒芾速M(fèi)水了。
(4)(生):我要用洗腳水沖廁所。
3.主持人:大家談得都很好,下面誰想出題考考大家,答對(duì)了請(qǐng)給點(diǎn)掌聲。
(1)(生):小明讓爸爸刷車時(shí)把水龍頭開小點(diǎn),請(qǐng)回答對(duì)不對(duì)。
(2)(生):小蘭告訴奶奶把洗菜水別到掉,留沖廁所用。
(3)一生跑上說:主持人請(qǐng)把手機(jī)借我用用好嗎?我想現(xiàn)在就給姥姥打個(gè)電話,告訴她做飯時(shí)別把淘米水到掉了,用它沖廁所或澆花用。(電話內(nèi)容略寫)
(4)一生說:主持人我們想給大家表演一個(gè)小品行嗎?
主持人:可以,大家歡迎!請(qǐng)看小品《這又不是我家的》
大概意思是:學(xué)校男廁所便池堵了,水龍頭又大開,水流滿地。學(xué)生甲乙丙三人分別上廁所,看見后又皺眉又罵,但都沒有關(guān)水管,嘴里還念念有詞,又說:“反正不是我家的?!?/p>
旁白:“那又是誰家的呢?”
主持人:看完這個(gè)小品,你們有什么想法嗎?誰愿意給大家說說?
甲:剛才三個(gè)同學(xué)太自私了,公家的水也是大家的,流掉了多可惜,應(yīng)該把水龍頭關(guān)上。
乙:上次我去廁所看見水龍頭沒關(guān)就主動(dòng)關(guān)上了。
主持人:我們給他鼓鼓掌,今后你們發(fā)現(xiàn)水龍頭沒關(guān)會(huì)怎樣做呢?
齊:主動(dòng)關(guān)好。
小記者:同學(xué)們,你們好!我想打擾一下,聽說你們正在開班會(huì),我想采訪一下,行嗎?
主持人:可以。
小記者:這位同學(xué),你好!通過參加今天的班會(huì)你有什么想法,請(qǐng)談?wù)労脝幔?/p>
答:我要做節(jié)水的主人,不浪費(fèi)一滴水。
小記者:請(qǐng)這位同學(xué)談?wù)労脝幔?/p>
答:今天參加班會(huì)我知道了節(jié)約每一滴水要從我們每個(gè)人做起。我想把每個(gè)廁所都貼上“節(jié)約用水”的字條,這樣就可以提醒同學(xué)們節(jié)約用水了。
小記者:你們談得很好,我的收獲也很大。我還有新任務(wù)先走了,同學(xué)們?cè)僖姡?/p>
水跑上來說:同學(xué)們,今天我很高興,我“水伯伯”今天很開心,你們知道了有了我就有了生命的源泉,請(qǐng)你們今后一定節(jié)約用水呀!讓人類和動(dòng)物、植物共存,迎接美好的明天!
主持人:你們還有發(fā)言的嗎?
答:有。
生:我代表人們謝謝你,水伯伯,節(jié)約用水就等于保護(hù)我們?nèi)祟愖约骸?/p>
動(dòng)物:小熊上場(chǎng)說:我代表動(dòng)物家族謝謝你了,我們也會(huì)保護(hù)你的!
花草樹木跑上場(chǎng)說:我們也不會(huì)忘記你的貢獻(xiàn)!
水伯伯:(手舞足蹈地跳起了舞蹈)……同學(xué)們的笑聲不斷。
主持人:水伯伯,您這是干什么呢?
水伯伯:因?yàn)槲姨吲d了,今后還請(qǐng)你們多關(guān)照我呀!
主持人:水伯伯,請(qǐng)放心,今后我們一定會(huì)做得更好!再見!
4.主持人:大家歡迎老師講話!
同學(xué)們,今天我們召開的班會(huì)非常生動(dòng),非常有意義。水是生命之源,無比珍貴,愿同學(xué)們能加倍珍惜它,做到節(jié)約一滴水,造福子孫后代。
5.主持人宣布:“水”是萬物之源主題班會(huì)到此結(jié)束。
6.活動(dòng)效果:
此次活動(dòng)使學(xué)生明白了節(jié)約用水的道理,浪費(fèi)水的現(xiàn)象減少了,宣傳節(jié)約用水的人增多了,人人爭(zhēng)做節(jié)水小標(biāo)兵
活動(dòng)目的:教育學(xué)生懂得“水”這一寶貴資源對(duì)于我們來說是極為珍貴的,每個(gè)人都要保護(hù)它,做到節(jié)約每一滴水,造福子孫萬代。
活動(dòng)過程:
1.主持人上場(chǎng),神秘地說:“我讓大家猜個(gè)謎語,你們?cè)敢鈫??”大家回答:“愿意!?/p>
主持人口述謎語:
“雙手抓不起,一刀劈不開,
煮飯和洗衣,都要請(qǐng)它來?!?/p>
主持人問:“誰知道這是什么?”生答:“水!”
一生戴上水的頭飾上場(chǎng)說:“我就是同學(xué)們猜到的水。聽大家說,我的用處可大了,是真的嗎?”
主持人:我宣布:“水”是萬物之源主題班會(huì)現(xiàn)在開始。
水說:“同學(xué)們,你們知道我有多重要嗎?”齊答:“知道?!?/p>
甲:如果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小學(xué)來客來訪登記制度范本(二篇)
- 2024年小學(xué)德育個(gè)人工作總結(jié)(二篇)
- 2024年小學(xué)六年級(jí)班務(wù)工作計(jì)劃例文(二篇)
- 青島市黃島區(qū)風(fēng)光互補(bǔ)路燈項(xiàng)目投資計(jì)劃書
- 2024年單位解除勞動(dòng)合同格式范文(二篇)
- 2024年安全風(fēng)險(xiǎn)分級(jí)管控工作制度范例(二篇)
- 2024年醫(yī)院隱患排查治理制度范文(二篇)
- 2024年廠房倉庫租賃合同格式范文(二篇)
- 2024年學(xué)校安全保衛(wèi)工作制度(二篇)
- 2024年商鋪轉(zhuǎn)讓合同協(xié)議范本(四篇)
- 80T水泥罐安裝方案9.18
- 社區(qū)委員的辭職報(bào)告 社區(qū)兩委辭職報(bào)告
- 新蘇教版數(shù)學(xué)小學(xué)六年級(jí)上冊(cè)單元試題全冊(cè)
- 簡(jiǎn)歷常用icon圖標(biāo)Word簡(jiǎn)歷模板
- 社區(qū)老年人群保健與護(hù)理PPT課件
- 理工學(xué)院大一新生動(dòng)員大會(huì)PPT課件
- 【行業(yè)】電動(dòng)車動(dòng)力電池包高清大圖賞析
- 機(jī)械設(shè)備工程工程量清單計(jì)價(jià)PPT課件
- F1等級(jí)砝碼標(biāo)準(zhǔn)報(bào)告
- 漆黑的魅影5.0二周目圖文攻略
- 康復(fù)醫(yī)學(xué)科治療范圍和收費(fèi)
評(píng)論
0/150
提交評(píng)論