2024屆河南省鞏義市市直高中高三教學質(zhì)量檢查數(shù)學試題_第1頁
2024屆河南省鞏義市市直高中高三教學質(zhì)量檢查數(shù)學試題_第2頁
2024屆河南省鞏義市市直高中高三教學質(zhì)量檢查數(shù)學試題_第3頁
2024屆河南省鞏義市市直高中高三教學質(zhì)量檢查數(shù)學試題_第4頁
2024屆河南省鞏義市市直高中高三教學質(zhì)量檢查數(shù)學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆河南省鞏義市市直高中高三教學質(zhì)量檢查數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.02.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交3.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②4.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2825.已知函數(shù),存在實數(shù),使得,則的最大值為()A. B. C. D.6.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個7.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.8.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.9.已知圓關(guān)于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.10.我國宋代數(shù)學家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質(zhì)是根據(jù)三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或11.復數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.12.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有兩個極值點、,則的取值范圍為_________.14.在中,,,,則繞所在直線旋轉(zhuǎn)一周所形成的幾何體的表面積為______________.15.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.16.直線過圓的圓心,則的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.18.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))19.(12分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.20.(12分)中的內(nèi)角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.21.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50名學生,統(tǒng)計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分數(shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.22.(10分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關(guān)?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【題目詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【題目點撥】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.2、D【解題分析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【題目詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【題目點撥】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.3、C【解題分析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【題目詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【題目點撥】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.4、B【解題分析】

將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【題目詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【題目點撥】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題5、A【解題分析】

畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導數(shù)研究單調(diào)性,分析最值,即得解.【題目詳解】由于,,由于,令,,在↗,↘故.故選:A【題目點撥】本題考查了導數(shù)在函數(shù)性質(zhì)探究中的應用,考查了學生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學運算的能力,屬于較難題.6、B【解題分析】

滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,分別對所給函數(shù)進行驗證.【題目詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【題目點撥】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學生邏輯推理與分析能力,是一道容易題.7、B【解題分析】

由可得,所以,故選B.8、B【解題分析】

先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【題目詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【題目點撥】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.9、C【解題分析】

將圓,化為標準方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【題目詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【題目點撥】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.10、C【解題分析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【題目詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【題目點撥】本題主要考查余弦定理和平方關(guān)系,還考查了對數(shù)學史的理解能力,屬于基礎題.11、C【解題分析】

,分子分母同乘以分母的共軛復數(shù)即可.【題目詳解】由已知,,故的虛部為.故選:C.【題目點撥】本題考查復數(shù)的除法運算,考查學生的基本運算能力,是一道基礎題.12、D【解題分析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【題目詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【題目點撥】本題綜合考查向量運算與雙曲線的相關(guān)性質(zhì),難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

確定函數(shù)的定義域,求導函數(shù),利用極值的定義,建立方程,結(jié)合韋達定理,即可求的取值范圍.【題目詳解】函數(shù)的定義域為,,依題意,方程有兩個不等的正根、(其中),則,由韋達定理得,,所以,令,則,,當時,,則函數(shù)在上單調(diào)遞減,則,所以,函數(shù)在上單調(diào)遞減,所以,.因此,的取值范圍是.故答案為:.【題目點撥】本題考查了函數(shù)極值點問題,考查了函數(shù)的單調(diào)性、最值,將的取值范圍轉(zhuǎn)化為以為自變量的函數(shù)的值域問題是解答的關(guān)鍵,考查計算能力,屬于中等題.14、【解題分析】

由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,根據(jù)圓錐側(cè)面積計算公式可得.【題目詳解】解:由題知該旋轉(zhuǎn)體為兩個倒立的圓錐底對底組合在一起,在中,,,,如下圖所示,底面圓的半徑為,則所形成的幾何體的表面積為.故答案為:.【題目點撥】本題考查旋轉(zhuǎn)體的表面積計算問題,屬于基礎題.15、【解題分析】

討論裝球盒子的個數(shù),計算得到答案.【題目詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【題目點撥】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.16、【解題分析】

直線mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),可得m+n=1,再利用“乘1法”和基本不等式的性質(zhì)即可得出.【題目詳解】∵mx﹣ny﹣1=0(m>0,n>0)經(jīng)過圓x2+y2﹣2x+2y﹣1=0的圓心(1,﹣1),∴m+n﹣1=0,即m+n=1.∴()(m+n)=22+2=4,當且僅當m=n時取等號.∴則的最小值是4.故答案為:4.【題目點撥】本題考查了圓的標準方程、“乘1法”和基本不等式的性質(zhì),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)證明見解析【解題分析】

(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設,再構(gòu)造函數(shù),利用導數(shù)得單調(diào)性,進而得證.【題目詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調(diào)遞增;②當時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調(diào)遞減,,故對于時,總有.由此得【題目點撥】本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.18、(1)分布列見解析;(2)406.【解題分析】

(1)計算個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為,得到分布列.(2)計算,代入數(shù)據(jù)計算比較大小得到答案.【題目詳解】(1)設每個人的血呈陰性反應的概率為,則.所以個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個人的平均化驗次數(shù)為:時,,此時1000人需要化驗的總次數(shù)為690次,時,,此時1000人需要化驗的總次數(shù)為604次,時,,此時1000人需要化驗的次數(shù)總為594次,即時化驗次數(shù)最多,時次數(shù)居中,時化驗次數(shù)最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當時化驗次數(shù)最多可以平均減少次.【題目點撥】本題考查了分布列,數(shù)學期望,意在考查學生的計算能力和應用能力.19、(1);(2).【解題分析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【題目詳解】(1)當時,,由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),,,,,,.【題目點撥】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵,屬中等題.20、(1)(2)10【解題分析】

(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【題目詳解】(1),,在中,由正弦定理得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論