材料科學(xué)基礎(chǔ)英文課件Chapter 4 Diffusion_第1頁
材料科學(xué)基礎(chǔ)英文課件Chapter 4 Diffusion_第2頁
材料科學(xué)基礎(chǔ)英文課件Chapter 4 Diffusion_第3頁
材料科學(xué)基礎(chǔ)英文課件Chapter 4 Diffusion_第4頁
材料科學(xué)基礎(chǔ)英文課件Chapter 4 Diffusion_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Chapter4Diffusion

WHYSTUDYDiffusion?Materialsofalltypesareoftenheat-treatedtoimprovetheirproperties.Thephenomenathatoccurduringaheattreatmentalmostalwaysinvolveatomicdiffusion.Often,anenhancementofdiffusionrateisdesired;onoccasion,measuresaretakentoreduceit.Heattreatingtemperaturesandtimesand/orcoolingratescanoftenbepredictedbyusingthemathematicsofdiffusionandappropriatediffusionconstants.LearningObjectivesAfterstudyingthischapter,youshouldbeabletodothefollowing:1.Nameanddescribethetwoatomicmechanismsofdiffusion.2.Distinguishbetweensteady-stateandnonsteadystatediffusion.3.(a)WriteFick’sfirstandsecondlawsinequationformanddefineallparameters.(b)Notethekindofdiffusionforwhicheachoftheseequationsisnormallyapplied.4.WritethesolutiontoFick’ssecondlawfordiffusionintoasemi-infinitesolidwhentheconcentrationofdiffusingspeciesatthesurfaceisheldconstant.Defineallparametersinthisequation.5.Calculatethediffusioncoefficientforamaterialataspecifiedtemperature,giventheappropriatediffusionconstants.4.1INTRODUCTIONdiffusion:thephenomenonofmaterialtransportbyatomicmotion.perfectmixingpartiallymixedtimedyewaterThisresultindicatesthatcopperatomshavemigratedordiffusedintothenickel,andthatnickelhasdiffusedintocopper.Theprocessbywhichatomsofonemetaldiffuseintoanotheristermedinterdiffusion,orimpuritydiffusion.Diffusionalsooccursforpuremetals,butallatomsexchangingpositionsareofthesametype;thisistermedself-diffusion.4.2DIFFUSIONMECHANISMSFromanatomicperspective,diffusionisjustthestepwisemigrationofatomsfromlatticesitetolatticesite.Infact,theatomsinsolidmaterialsareinconstantmotion,rapidlychangingpositions.Foranatomtomakesuchamove,twoconditionsmustbemet:

(1)theremustbeanemptyadjacentsite(2)theatommusthavesufficientenergytobreakbondswithitsneighboratomsandthencausesomelatticedistortionduringthedisplacement.Ataspecifictemperature,somesmallfractionofthetotalnumberofatomsiscapableofdiffusivemotion,byvirtueofthemagnitudesoftheirvibrationalenergies.Thisfractionincreaseswithrisingtemperature.twodominatemodelsformetallicdiffusionVacancyDiffusionInterstitialDiffusion(1)VacancyDiffusionOnemechanisminvolvestheinterchangeofanatomfromanormallatticepositiontoanadjacentvacantlatticesiteorvacancy,thisprocessnecessitatesthepresenceofvacancies,andtheextenttowhichvacancydiffusioncanoccurisafunctionofthenumberofthesedefectsthatarepresent;significantconcentrationsofvacanciesmayexistinmetalsatelevatedtemperaturesBecausediffusingatomsandvacanciesexchangepositions,thediffusionofatomsinonedirectioncorrespondstothemotionofvacanciesintheoppositedirection.(b)InterstitialDiffusiondiffusioninvolvesatomsthatmigratefromaninterstitialpositiontoaneighboringonethatisempty.Thismechanismisfoundforinterdiffusionofimpuritiessuchashydrogen,carbon,nitrogen,andoxygen,whichhaveatomsthataresmallenoughtofitintotheinterstitialpositionsInmostmetalalloys,interstitialdiffusionoccursmuchmorerapidlythandiffusionbythevacancymode,becausetheinterstitialatomsaresmallerandthusmoremobile.Furthermore,therearemoreemptyinterstitialpositionsthanvacancies;hence,theprobabilityofinterstitialatomicmovementisgreaterthanforvacancydiffusion.4.3FICK’SFIRSTLAWDiffusionisatime-dependentprocess—thatis,inamacroscopicsense,thequantityofanelementthatistransportedwithinanotherisafunctionoftime.Oftenitisnecessarytoknowhowfastdiffusionoccurs,ortherateofmasstransfer.Thisrateisfrequentlyexpressedasadiffusionflux(J),definedasthemass(or,equivalently,thenumberofatoms)Mdiffusingthroughandperpendiculartoaunitcross-sectionalareaofsolidperunitoftime.Inmathematicalform,thismayberepresentedasJ=-DdCdxTheunitsforJarekilogramsoratomspermetersquaredpersecond(kg/m2·soratoms/m2·s).dC/dxistheconcentrationgradient,TheconstantofproportionalityDiscalledthediffusioncoefficient,

whichisexpressedinsquaremeterspersecond.Fick’sfirstlaw.Thenegativesigninthisexpressionindicatesthatthedirectionofdiffusionisdowntheconcentrationgradient,fromahightoalowconcentration.(4.1)Fick’sfirstlawmaybeappliedtothediffusionofatomsofagasthroughathinmetalplateforwhichtheconcentrations(orpressures)ofthediffusingspeciesonbothsurfacesoftheplateareheldconstant.Thisdiffusionprocesseventuallyreachesastatewhereinthediffusionfluxdoesnotchangewithtime—thatis,themassofdiffusingspeciesenteringtheplateonthehigh-pressuresideisequaltothemassexitingfromthelow-pressuresurface—suchthatthereisnonetaccumulationofdiffusingspeciesintheplate.Thisisanexampleofwhatistermedsteady-statediffusion.WhenconcentrationCisplottedversusposition(ordistance)withinthesolidx,theresultingcurveistermedtheconcentrationprofile;furthermore,concentrationgradientistheslopeataparticularpointonthiscurve.Onepracticalexampleofsteady-statediffusionisfoundinthepurificationofhydrogengas.Onesideofathinsheetofpalladiummetalisexposedtotheimpuregascomposedofhydrogenandothergaseousspeciessuchasnitrogen,oxygen,andwatervapor.Thehydrogenselectivelydiffusesthroughthesheettotheoppositeside,whichismaintainedataconstantandlowerhydrogenpressure.H2+othergaseousc1palladiumH2EXAMPLEPROBLEM4.1Aplateofironisexposedtoacarburizing(carbon-rich)atmosphereononesideandadecarburizing(carbon-deficient)atmosphereontheothersideat700℃.Ifaconditionofsteadystateisachieved,calculatethediffusionfluxofcarbonthroughtheplateiftheconcentrationsofcarbonatpositionsof5and10mm(5×10-3

and10-2

m)beneaththecarburizingsurfaceare1.2and0.8kg/m3,respectively.Assumeadiffusioncoefficientof3×10-11m2/satthistemperature.SolutionFick’sfirstlaw,isusedtodeterminethediffusionflux.4.4FICK’SSECONDLAW—NONSTEADY-STATEDIFFUSIONMostpracticaldiffusionsituationsarenonsteady-stateones—thatis,thediffusionfluxandtheconcentrationgradientatsomeparticularpointinasolidvarywithtime,withanetaccumulationordepletionofthediffusingspeciesresulting.Concentrationprofilesfornonsteady-statediffusiontakenatthreedifferenttimes,t1,t2,andt3.Underconditionsofnonsteadystate,thepartialdifferentialequationknownasFick’ssecondlaw,isusedIfthediffusioncoefficientisindependentofcomposition,EquationsimplifiestoThislawstatesthattherateofcompositionalchangeisequaltothediffusivitytimestherateofchangeoftheconcentrationgradient.(4.2)(4.3)SolutionsoftheFick’ssecondlaw

Solutionstothisexpression(concentrationintermsofbothpositionandtime)arepossiblewhenphysicallymeaningfulboundaryconditionsarespecified.Onepracticallyimportantsolutionisforasemi-infinitesolid

inwhichthesurfaceconcentrationisheldconstant.Frequently,thesourceofthediffusingspeciesisagasphase,thepartialpressureofwhichismaintainedataconstantvalue.Furthermore,thefollowingassumptionsaremade:1.Beforediffusion,anyofthediffusingsoluteatomsinthesolidareuniformlydistributedwithconcentrationofC0.2.Thevalueofxatthesurfaceiszeroandincreaseswithdistanceintothesolid.3.Thetimeistakentobezerotheinstantbeforethediffusionprocessbegins.Initialcondition:Fort=0,C=C0at0≤x≤∞Boundaryconditions:Fort>0,C=Cs(theconstantsurfaceconcentration)atx=0Fort>0,C=C0

atx=∞Theseconditionsaresimplystatedasfollows:ApplicationoftheseconditionstoEquation,

yieldsthesolutionwhereCxrepresentstheconcentrationatdepthxaftertimet.

(4.4)

Concentrationprofilefornonsteady-statediffusion;concentrationparametersrelatetoEquationSupposethatitisdesiredtoachievesomespecificconcentrationofsolute,C1,inanalloy;theleft-handsideofEquationandsubsequentlytheright-handsideisalsoaconstantSomediffusioncomputationsarefacilitatedonthebasisofthisrelationship(4.5)EXAMPLEPROBLEM4.2Forsomeapplications,itisnecessarytohardenthesurfaceofasteel(oriron–carbonalloy)abovethatofitsinterior.Onewaythismaybeaccomplishedisbyincreasingthesurfaceconcentrationofcarboninaprocesstermedcarburizing;thesteelpieceisexposed,atanelevatedtemperature,toanatmosphererichinahydrocarbongas,suchasmethane(CH4).Consideronesuchalloythatinitiallyhasauniformcarbonconcentrationof0.25wt%andistobetreatedat950℃.Iftheconcentrationofcarbonatthesurfaceissuddenlybroughttoandmaintainedat1.20wt%,howlongwillittaketoachieveacarboncontentof0.80wt%ataposition0.5mmbelowthesurface?Thediffusioncoefficientforcarboninironatthistemperatureis1.6×10-11

m2/s;assumethatthesteelpieceissemi-infinite.SolutionBecausethisisanonsteady-statediffusionprobleminwhichthesurfacecompositionisheldconstant,Valuesforalltheparametersinthisexpressionexcepttimetarespecifiedintheproblemasfollows:Wemustnowdeterminethevalueofzforwhichtheerrorfunctionis0.4210.Aninterpolationisnecessary,asz=0.392EXAMPLEPROBLEM4.3Thediffusioncoefficientsforcopperinaluminumat500℃

and600℃

are4.8×10-14and5.3×10-13m2/s,respectively.Determinetheapproximatetimeat500℃

thatwillproducethesamediffusionresult(intermsofconcentrationofCuatsomespecificpointinAl)asa10-hheattreatmentat℃.EquationmaybewrittenasSolutionBecauseatboth500℃and600℃

thecompositionremainsthesameatsomeposition,sayx0withtheresultthator4.5EFFECTOFTEMPERATUREONDIFFUSIONINSOLIDSSinceatomdiffusioninvolvesatomicmovements,itistobeexpectedthatbyincreasingthetemperatureofadiffusionsystemwillincreasethediffusionrate.Byexperiment,ithasbeenfoundthatthetemperaturedependenceofthediffusionrateofmanydiffusionsystemscanbeexpressedbythefollowingArrhenius-typeequation:(4.6)where:D0=atemperature-independentpreexponential(m2/s)Qd

=theactivationenergyfordiffusion(J/moloreV/atom)R=thegasconstant,8.31J/mol·Kor8.62×10-5eV/atom·KT=absolutetemperature(K)Theactivationenergymaybethoughtofasthatenergyrequiredtoproducethediffusivemotionofonemoleofatoms.Alargeactivationenergyresultsinarelativelysmalldiffusioncoefficient.(4.6)TakingnaturallogarithmsofEquation4.6yields(4.7)or,intermsoflogarithmstothebase10,(4.8)BecauseD0,Qd,andRareallconstants,Equation4.8takesontheformofanequationofastraightline:whereyandxareanalogous,respectively,tothevariableslogDand1/T.Thus,iflogDisplottedversusthereciprocaloftheabsolutetemperature,astraightlineshouldresult,havingslopeandinterceptof-Qd/2.3RandlogD0,respectively.Thisis,infact,themannerinwhichthevaluesofQd

andD0aredeterminedexperimentally.

Fromsuchaplotforseveralalloysystems,itmaybenotedthatlinearrelationshipsexistforallcasesshown.EXAMPLEPROBLEM4.4UsingthedatainTable,computethediffusioncoefficientformagnesiuminaluminumat550℃.SolutionThisdiffusioncoefficientmaybedeterminedbyapplyingEquation4.6;thevaluesofD0andQd

fromTabl

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論