2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省平原縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.2.已知扇形的半徑為,面積為,則這個扇形圓心角的弧度數(shù)為()A. B. C.2 D.43.函數(shù)的最小正周期是()A. B. C. D.4.下列說法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則5.如圖,網(wǎng)格紙上小正方形的邊長均為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.34 B.42 C.54 D.726.在中,角、、所對的邊分別為、、,如果,則的形狀是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形7.在一次隨機試驗中,彼此互斥的事件A,B,C,D的概率分別是0.1,0.2,0.3,0.4,則下列說法正確的是A.A+B與C是互斥事件,也是對立事件 B.B+C與D不是互斥事件,但是對立事件C.A+C與B+D是互斥事件,但不是對立事件 D.B+C+D與A是互斥事件,也是對立事件8.圓關(guān)于原點對稱的圓的方程為()A. B.C. D.9.設(shè)向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.410.下面結(jié)論中,正確結(jié)論的是()A.存在兩個不等實數(shù),使得等式成立B.(0<x<π)的最小值為4C.若是等比數(shù)列的前項的和,則成等比數(shù)列D.已知的三個內(nèi)角所對的邊分別為,若,則一定是銳角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.用列舉法表示集合__________.12.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.13.函數(shù)f(x)=sin22x的最小正周期是__________.14.已知數(shù)列,若對任意正整數(shù)都有,則正整數(shù)______;15.中,內(nèi)角、、所對的邊分別是、、,已知,且,,則的面積為_____.16.將正偶數(shù)按下表排列成列,每行有個偶數(shù)的蛇形數(shù)列(規(guī)律如表中所示),則數(shù)字所在的行數(shù)與列數(shù)分別是_______________.第列第列第列第列第列第行第行第行第行……三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在一個周期內(nèi)的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調(diào)遞增區(qū)間.18.在平面直角坐標(biāo)系中,已知曲線的方程是(,).(1)當(dāng),時,求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點,,且,求點到直線距離的最小值.19.等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.20.已知數(shù)列中,,,數(shù)列滿足。(1)求證:數(shù)列為等差數(shù)列。(2)求數(shù)列的通項公式。21.近年來,我國自主研發(fā)的長征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進劑的質(zhì)量為,去除推進劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動機噴流相對火箭的速度,假設(shè),,,是以為底的自然對數(shù),,.(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時,求的值(精確到小數(shù)點后面1位).(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請問的最小值為多少(精確到小數(shù)點后面1位)?由此指出其實際意義.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關(guān)幾何體體積公式進行計算.由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.2、D【解題分析】

利用扇形面積,結(jié)合題中數(shù)據(jù),建立關(guān)于圓心角的弧度數(shù)的方程,即可解得.【題目詳解】解:設(shè)扇形圓心角的弧度數(shù)為,因為扇形所在圓的半徑為,且該扇形的面積為,則扇形的面積為,解得:.故選:D.【題目點撥】本題在已知扇形面積和半徑的情況下,求扇形圓心角的弧度數(shù),著重考查了弧度制的定義和扇形面積公式等知識,屬于基礎(chǔ)題.3、A【解題分析】

作出函數(shù)的圖象可得出該函數(shù)的最小正周期。【題目詳解】作出函數(shù)的圖象如下圖所示,由圖象可知,函數(shù)的最小正周期為,故選:A?!绢}目點撥】本題考查三角函數(shù)周期的求解,一般而言,三角函數(shù)最小正周期的求解方法有如下幾種:(1)定義法:即;(2)公式法:當(dāng)時,函數(shù)或的最小正周期為,函數(shù)最小正周期為;(3)圖象法。4、D【解題分析】

利用不等式的性質(zhì)或舉反例的方法來判斷各選項中不等式的正誤.【題目詳解】對于A選項,若且,則,該選項錯誤;對于B選項,取,,,,則,均滿足,但,B選項錯誤;對于C選項,取,,則滿足,但,C選項錯誤;對于D選項,由不等式的性質(zhì)可知該選項正確,故選:D.【題目點撥】本題考查不等式正誤的判斷,常用不等式的性質(zhì)以及舉反例的方法來進行驗證,考查推理能力,屬于基礎(chǔ)題.5、C【解題分析】

還原幾何體得四棱錐E﹣ABCD,由圖中數(shù)據(jù)利用椎體的體積公式求解即可.【題目詳解】依三視圖知該幾何體為四棱錐E﹣ABCD,如圖,ABCD是直角梯形,是棱長為6的正方體的一部分,梯形的面積為:12幾何體的體積為:13故選:C.【題目點撥】本題考查三視圖求幾何體的體積,由三視圖正確還原幾何體和補形是解題的關(guān)鍵,考查空間想象能力.6、C【解題分析】

結(jié)合正弦定理和三角恒等變換及三角函數(shù)的誘導(dǎo)公式化簡即可求得結(jié)果【題目詳解】利用正弦定理得,化簡得,即,則或,解得或故的形狀是等腰三角形或直角三角形故選:C【題目點撥】本題考查根據(jù)正弦定理和三角恒等變化,三角函數(shù)的誘導(dǎo)公式化簡求值,屬于中檔題7、D【解題分析】

不可能同時發(fā)生的事件為互斥事件,當(dāng)兩個互斥事件的概率和為1,則兩個事件為對立事件,易得答案.【題目詳解】因為事件彼此互斥,所以與是互斥事件,因為,,,所以與是對立事件,故選D.【題目點撥】本題考查互斥事件、對立事件的概念,注意對立事件一定是互斥事件,而互斥事件不一定是對立事件.8、D【解題分析】

根據(jù)已知圓的方程可得其圓心,進而可求得其關(guān)于原點對稱點,利用圓的標(biāo)準(zhǔn)方程即可求解.【題目詳解】由圓,則圓心為,半徑,圓心為關(guān)于原點對稱點為,所以圓關(guān)于原點對稱的圓的方程為.故選:D【題目點撥】本題考查了根據(jù)圓心與半徑求圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.9、B【解題分析】

首先求出的坐標(biāo),再根據(jù)平面向量共線定理解答.【題目詳解】解:,因為,所以,解得.故選:【題目點撥】本題考查平面向量共線定理的應(yīng)用,屬于基礎(chǔ)題.10、A【解題分析】

對各個選項逐一判斷,對于選項A,由,代入計算,即可判斷是否正確;對于選項B,設(shè),結(jié)合函數(shù)的單調(diào)性,即可判斷是否正確;對于選項C,由公比為為偶數(shù),即可判斷是否正確;對于選項D,由余弦定理,即可判斷是否正確.【題目詳解】對于選項A,兩個不等實數(shù),使得等式成立,故A正確;對于選項B,若設(shè)設(shè),可得在遞減,即函數(shù)的最小值為,故B錯誤;對于選項C,是等比數(shù)列的前項的和,當(dāng)公比,為偶數(shù)時,則,均為,不能夠成等比數(shù)列,故C錯誤;對于選項D,中,若,可得,即為銳角,不能判斷一定是銳角三角形,故D錯誤.故選:A.【題目點撥】本題考查兩角和的正弦公式、基本不等式和等比數(shù)列的性質(zhì),以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

先將的表示形式求解出來,然后根據(jù)范圍求出的可取值.【題目詳解】因為,所以,又因為,所以,此時或,則可得集合:.【題目點撥】本題考查根據(jù)三角函數(shù)值求解給定區(qū)間中變量的值,難度較易.12、.【解題分析】

根據(jù)棱錐的結(jié)構(gòu)特點,確定所求的圓柱的高和底面半徑.【題目詳解】由題意四棱錐的底面是邊長為的正方形,側(cè)棱長均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,圓柱的底面半徑為,一個底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【題目點撥】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎(chǔ)題.13、.【解題分析】

將所給的函數(shù)利用降冪公式進行恒等變形,然后求解其最小正周期即可.【題目詳解】函數(shù),周期為【題目點撥】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎(chǔ)題.14、9【解題分析】

分析數(shù)列的單調(diào)性,以及數(shù)列各項的取值正負(fù),得到數(shù)列中的最大項,由此即可求解出的值.【題目詳解】因為,所以時,,時,,又因為在上遞增,在也是遞增的,所以,又因為對任意正整數(shù)都有,所以.故答案為:.【題目點撥】本題考查數(shù)列的單調(diào)性以及數(shù)列中項的正負(fù)判斷,難度一般.處理數(shù)列單調(diào)性或者最值的問題時,可以采取函數(shù)的思想來解決問題,但是要注意到數(shù)列對應(yīng)的函數(shù)的定義域為.15、【解題分析】

由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計算出的面積.【題目詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【題目點撥】本題考查正弦定理邊角互化思想的應(yīng)用,考查利用余弦定理解三角形以及三角形面積公式的應(yīng)用,解題時要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運算求解能力,屬于中等題.16、行列【解題分析】

設(shè)位于第行第列,觀察表格中數(shù)據(jù)的規(guī)律,可得出,由此可求出的值,再觀察奇數(shù)行和偶數(shù)行最小數(shù)的排列,可得出的值,由此可得出結(jié)果.【題目詳解】設(shè)位于第行第列,由表格中的數(shù)據(jù)可知,第行最大的數(shù)為,則,解得,由于第行最大的數(shù)為,所以,是表格中第行最小的數(shù),由表格中的規(guī)律可知,奇數(shù)行最小的數(shù)放在第列,那么.因此,位于表格中第行第列.故答案為:行列.【題目點撥】本題考查歸納推理,解題的關(guān)鍵就是要結(jié)合表格中數(shù)據(jù)所呈現(xiàn)的規(guī)律來進行推理,考查推理能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】

(1)由函數(shù)的圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A(chǔ),且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式.(2)利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間.【題目詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內(nèi)的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A(chǔ)=4,且,∴,∴ω=1.所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調(diào)遞增區(qū)間為.【題目點撥】本題主要考查由函數(shù)y=Asin(ωx+)的性質(zhì)求解析式,通常由函數(shù)的最大值求出A,由周期求出ω,由五點法作圖求出的值,考查了正弦型函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.18、(1)4;(2).【解題分析】

(1)當(dāng),時,曲線的方程是,對絕對值內(nèi)的數(shù)進行討論,得到四條直線圍成一個菱形,并求出面積為4;(2)對進行討論,化簡曲線方程,并與直線方程聯(lián)立,求出點的坐標(biāo),由得到的關(guān)系,再利用點到直線的距離公式求出,從而求得.【題目詳解】(1)當(dāng),時,曲線的方程是,當(dāng)時,,當(dāng)時,,當(dāng)時,方程等價于,當(dāng)時,方程等價于,當(dāng)時,方程等價于,當(dāng)時,方程等價于,曲線圍成的區(qū)域為菱形,其面積為;(2)當(dāng),時,有,聯(lián)立直線可得,當(dāng),時,有,聯(lián)立直線可得,由可得,即有,化為,點到直線距離,由題意可得,,,即,可得,,可得當(dāng),即時,點到直線距離取得最小值.【題目點撥】解析幾何的思想方法是坐標(biāo)法,通過代數(shù)運算解決幾何問題,本題對運算能力的要求是比較高的.19、(1);(2).【解題分析】

(1)根據(jù)等差數(shù)列公式得到方程組,計算得到答案.(2)先求出,再利用裂項求和求得.【題目詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項和.【題目點撥】本題考查了數(shù)列的通項公式,裂項求和,意在考查學(xué)生對于數(shù)列公式的靈活運用及計算能力.20、(1)見解析;(2)【解題分析】

(1)將題目過給已知代入進行化簡,結(jié)合的表達(dá)式,可證得為等差數(shù)列;(2)利用(1)的結(jié)論求得的通項公式,代入求得的通項公式.【題目詳解】(1)證明:由題意知,,又,故,又易知,故數(shù)列是首項為,公差為1的等差數(shù)列。(2)由(1)知,所以由,可得,故數(shù)列的通項公式為?!绢}目點撥】本小題第一問考查利用數(shù)列的遞推公式證明數(shù)列為等差數(shù)列,然后利用這個等差數(shù)列來求另一個等差數(shù)列的通項公式.在解題過程中,只需要牢牢把握住等差數(shù)列的定義,利用等差數(shù)列的定義來證明.21、(1)(2)見解析【解題分析】

(1)弄清題意,將相關(guān)數(shù)據(jù)代入齊奧爾科夫斯基公式:,即可得出各個等級的速度對應(yīng)的的值;(2)弄清題意與相關(guān)名詞,火箭起飛質(zhì)量即為,將公式變形,分離出,解不等式即可得,的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論