2024屆遼寧省葫蘆島錦化高中高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第1頁
2024屆遼寧省葫蘆島錦化高中高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁
2024屆遼寧省葫蘆島錦化高中高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁
2024屆遼寧省葫蘆島錦化高中高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁
2024屆遼寧省葫蘆島錦化高中高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆遼寧省葫蘆島錦化高中高一數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在平面直角坐標(biāo)系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若,則()A. B. C. D.2.過兩點A,B(,的直線傾斜角是,則的值是()A.B.3C.1D.3.在中,內(nèi)角,,的對邊分別為,,,若,,,則的最小角為()A. B. C. D.4.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.5.甲、乙、丙、丁4名田徑選手參加集訓(xùn),將挑選一人參加400米比賽,他們最近10次測試成績的平均數(shù)和方差如下表;根據(jù)表中數(shù)據(jù),應(yīng)選哪位選手參加比賽更有機(jī)會取得好成績?()甲乙丙丁平均數(shù)59575957方差12121010A.甲 B.乙 C.丙 D.丁6.已知角滿足,,且,,則的值為()A. B. C. D.7.在△ABC中,c=,A=75°,B=45°,則△ABC的外接圓面積為A. B.π C.2π D.4π8.已知函數(shù),如果不等式的解集為,那么不等式的解集為()A. B.C. D.9.已知圓柱的側(cè)面展開圖是一個邊長為的正方形,則這個圓柱的體積是()A. B. C. D.10.底面是正方形,從頂點向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長為1.側(cè)棱長為2,E為PC的中點,則異面直線PA與BE所成角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式為,若數(shù)列為單調(diào)遞增數(shù)列,則實數(shù)的取值范圍是______.12.在中,,,,則的面積是__________.13.若直線始終平分圓的周長,則的最小值為________14.已知兩點A(2,1)、B(1,1+)滿足=(sinα,cosβ),α,β∈(﹣,),則α+β=_______________15.已知等差數(shù)列的前項和為,若,則=_______16.函數(shù)的單調(diào)遞減區(qū)間是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個級別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫€數(shù);(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個路段,求依次抽取的三個級別路段的個數(shù);(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.18.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機(jī)選取一個向量,求的概率.19.已知數(shù)列滿足,,其中實數(shù).(I)求證:數(shù)列是遞增數(shù)列;(II)當(dāng)時.(i)求證:;(ii)若,設(shè)數(shù)列的前項和為,求整數(shù)的值,使得最?。?0.已知向量,,且,.(1)求函數(shù)和的解析式;(2)求函數(shù)的遞增區(qū)間;(3)若函數(shù)的最小值為,求λ值.21.某校高二年級共有800名學(xué)生參加2019年全國高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū)初賽,為了解學(xué)生成績,現(xiàn)隨機(jī)抽取40名學(xué)生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:分組頻數(shù)⑴試估計該年級成績不低于90分的學(xué)生人數(shù);⑵成績在的5名學(xué)生中有3名男生,2名女生,現(xiàn)從中選出2名學(xué)生參加訪談,求恰好選中一名男生一名女生的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】

由題意得到,再由兩角差的余弦及同角三角函數(shù)的基本關(guān)系式化簡求解.【題目詳解】解:∵角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱,

∴,

故選:D.【題目點撥】本題考查了兩角差的余弦公式的應(yīng)用,是基礎(chǔ)題.2、C【解題分析】試題分析:根據(jù)直線斜率的計算式有,解得.考點:直線斜率的計算式.3、A【解題分析】

由三角形大邊對大角可知所求角為角,利用余弦定理可求得,進(jìn)而得到結(jié)果.【題目詳解】的最小角為角,則故選:【題目點撥】本題考查利用余弦定理解三角形的問題,關(guān)鍵是明確三角形中大邊對大角的特點,進(jìn)而根據(jù)余弦定理求得所求角的余弦值.4、A【解題分析】

因為函數(shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.5、D【解題分析】

由平均數(shù)及方差綜合考慮得結(jié)論.【題目詳解】解:由四位選手的平均數(shù)可知,乙與丁的平均速度快;再由方差越小發(fā)揮水平越穩(wěn)定,可知丙與丁穩(wěn)定,故應(yīng)選丁選手參加比賽更有機(jī)會取得好成績.故選:.【題目點撥】本題考查平均數(shù)與方差,熟記結(jié)論是關(guān)鍵,屬于基礎(chǔ)題.6、D【解題分析】

根據(jù)角度范圍先計算和,再通過展開得到答案.【題目詳解】,,故答案選D【題目點撥】本題考查了三角函數(shù)恒等變換,將是解題的關(guān)鍵.7、B【解題分析】

根據(jù)正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.【題目詳解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.設(shè)△ABC的外接圓半徑為R,則由正弦定理可得2R=,解得R=1,故△ABC的外接圓面積S=πR2=π.故選B.【題目點撥】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.8、A【解題分析】

一元二次不等式大于零解集是,先判斷二次項系數(shù)為負(fù),再根據(jù)根與系數(shù)關(guān)系,可求出a,b的值,代入解析式,求解不等式.【題目詳解】由的解集是,則故有,即.由解得或故不等式的解集是,故選:A.【題目點撥】對于含參數(shù)的一元二次不等式需要先判斷二次項系數(shù)的正負(fù),再進(jìn)一步求解參數(shù).9、A【解題分析】

由已知易得圓柱的高為,底面圓周長為,求出半徑進(jìn)而求得底面圓半徑即可求出圓柱體積?!绢}目詳解】底面圓周長,,所以故選:A【題目點撥】此題考查圓柱的側(cè)面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡單題目。10、B【解題分析】

可采用建立空間直角坐標(biāo)系的方法來求兩條異面直線所成的夾角,【題目詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點,DA方向為x軸,AB方向為y軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點,,,,答案選B.【題目點撥】解決異面直線問題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)題意得到,推出,恒成立,求出的最大值,即可得出結(jié)果.【題目詳解】因為數(shù)列的通項公式為,且數(shù)列為單調(diào)遞增數(shù)列,所以,即,所以,恒成立,因此即可,又隨的增大而減小,所以,因此實數(shù)的取值范圍是.故答案為:【題目點撥】本題主要考查由數(shù)列的單調(diào)性求參數(shù),熟記遞增數(shù)列的特點即可,屬于常考題型.12、【解題分析】

計算,等腰三角形計算面積,作底邊上的高,計算得到答案.【題目詳解】,過C作于D,則故答案為【題目點撥】本題考查了三角形面積計算,屬于簡單題.13、9【解題分析】

平分圓的直線過圓心,由此求得的等量關(guān)系式,進(jìn)而利用基本不等式求得最小值.【題目詳解】由于直線始終平分圓的周長,故直線過圓的圓心,即,所以.【題目點撥】本小題主要考查直線和圓的位置關(guān)系,考查利用基本不等式求最小值,屬于基礎(chǔ)題.14、或0【解題分析】

運(yùn)用向量的加減運(yùn)算和特殊角的三角函數(shù)值,可得所求和.【題目詳解】兩點A(2,1)、B(1,1)滿足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即為sinα,cosβ,α,β∈(),可得α,β=±,則α+β=0或.故答案為0或.【題目點撥】本題考查向量的加減運(yùn)算和三角方程的解法,考查運(yùn)能力,屬于基礎(chǔ)題.15、【解題分析】

利用等差數(shù)列前項和,可得;利用等差數(shù)列的性質(zhì)可得,然后求解三角函數(shù)值即可.【題目詳解】等差數(shù)列的前項和為,因為,所以;又,所以.故答案為:.【題目點撥】本題考查等差數(shù)列的前項和公式和等差數(shù)列的性質(zhì)的應(yīng)用,熟練掌握和若,則是解題的關(guān)鍵.16、【解題分析】

求出函數(shù)的定義域,結(jié)合復(fù)合函數(shù)求單調(diào)性的方法求解即可.【題目詳解】由,解得令,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增函數(shù)在定義域內(nèi)單調(diào)遞增函數(shù)的單調(diào)遞減區(qū)間是故答案為:【題目點撥】本題主要考查了復(fù)合函數(shù)的單調(diào)性,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫€數(shù)分別為6,9,3;(2)從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1;(3)【解題分析】

(1)根據(jù)在頻率分布直方圖中,小長方形的面積表示各組的頻率,可以求出頻率,再根據(jù)頻數(shù)等于頻率乘以樣本容量,求出頻數(shù);(2)根據(jù)(1)求出擁堵路段的個數(shù),求出每層之間的占有比例,然后求出每層的個數(shù);(3)先求出從(2)中抽取的6個路段中任取2個,有多少種可能情況,然后求出至少有1個路段為輕度擁堵有多少種可能情況,根據(jù)古典概型概率公式求出.【題目詳解】(1)由頻率分布直方圖得,這20個交通路段中,輕度擁堵的路段有(0.1+0.2)×1×20=6(個),中度擁堵的路段有(0.25+0.2)×1×20=9(個),嚴(yán)重?fù)矶碌穆范斡?0.1+0.05)×1×20=3(個).(2)由(1)知,擁堵路段共有6+9+3=18(個),按分層抽樣,從18個路段抽取6個,則抽取的三個級別路段的個數(shù)分別為,,,即從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1.(3)記抽取的2個輕度擁堵路段為,,抽取的3個中度擁堵路段為,,,抽取的1個嚴(yán)重?fù)矶侣范螢椋瑒t從這6個路段中抽取2個路段的所有可能情況為:,共15種,其中至少有1個路段為輕度擁堵的情況為:,共9種.所以所抽取的2個路段中至少有1個路段為輕度擁堵的概率為.【題目點撥】本題考查了頻率直方圖的應(yīng)用、分層抽樣、古典概型概率的求法.解決本題的關(guān)鍵是對頻率直方圖所表示的意義要了解,分層抽樣的原則要知道,要能識別古典概型.18、(1);(2);(3).【解題分析】

(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標(biāo),求得向量對應(yīng)點的軌跡方程,將問題轉(zhuǎn)化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應(yīng)的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【題目詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè),由可得.不妨設(shè)的起始點為坐標(biāo)原點,終點為C.因此,點C落在以)為圓心,1為半徑的圓上(如圖).因為,即由圓的特點可知的最小值為,即:.(3)當(dāng)時,因為,,滿足勾股定理,故容易得.當(dāng)時,假設(shè)此時點落在如圖所示的F點處.如圖所示.因為,由余弦定理容易得,故.所以,本題化為,在半圓上任取一點C,點C落在弧CF上的概率.由幾何概型的概率計算可知:的概率即為圓心角的弧度除以,即.【題目點撥】本題考查向量垂直時數(shù)量積的表示,以及利用解析的手段解決向量問題的能力,還有幾何概型的概率計算,涉及圓方程的求解,以及余弦定理.本題屬于綜合題,值得總結(jié).19、(I)證明見解析;(II)(i)證明見解析;(ii).【解題分析】

(I)通過計算,結(jié)合,證得數(shù)列是遞增數(shù)列.(II)(i)將轉(zhuǎn)化為,利用迭代法證得.(ii)由(i)得,從而,即.利用裂項求和法求得,結(jié)合(i)的結(jié)論求得,由此得到當(dāng)時,取得最小值.【題目詳解】(I)由所以,因為,所以,即,所以,所以數(shù)列是遞增數(shù)列.(II)此時.(i)所以,有由(1)知是遞增數(shù)列,所以所以(ii)因為所以有.由由(i)知,所以所以所以當(dāng)時,取得最小值.【題目點撥】本小題主要考查數(shù)列單調(diào)性的證明方法,考查裂項求和法,考查迭代法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1),(2)遞增區(qū)間為,(3)【解題分析】

(1)根據(jù)向量的數(shù)量積坐標(biāo)運(yùn)算,以及模長的求解公式,即可求得兩個函數(shù)的解析式;(2)由(1)可得,整理化簡后,將其轉(zhuǎn)化為余弦型三角函數(shù),再求單調(diào)區(qū)間即可;(3)求得的解析式,用換元法,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論