2024屆內(nèi)蒙古五原縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第1頁(yè)
2024屆內(nèi)蒙古五原縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第2頁(yè)
2024屆內(nèi)蒙古五原縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第3頁(yè)
2024屆內(nèi)蒙古五原縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第4頁(yè)
2024屆內(nèi)蒙古五原縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆內(nèi)蒙古五原縣第一中學(xué)數(shù)學(xué)高一下期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知兩點(diǎn),,則()A. B. C. D.2.圓心為且過原點(diǎn)的圓的方程是()A.B.C.D.3.等差數(shù)列前項(xiàng)和為,滿足,則下列結(jié)論中正確的是()A.是中的最大值 B.是中的最小值C. D.4.在中,角的對(duì)邊分別為,若,則A.無(wú)解 B.有一解C.有兩解 D.解的個(gè)數(shù)無(wú)法確定5.《九章算術(shù)》卷5《商功》記載一個(gè)問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術(shù)曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積為:V=×(底面的圓周長(zhǎng)的平方×高).則由此可推得圓周率的取值為()A.3 B.3.14 C.3.2 D.3.36.如圖,正四棱柱中(底面是正方形,側(cè)棱垂直于底面),,則異面直線與所成角的余弦值為()A. B. C. D.7.若,且,則下列不等式中正確的是()A. B. C. D.8.如下圖,在四棱錐中,平面ABCD,,,,則異面直線PA與BC所成角的余弦值為()A. B. C. D.9.已知三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩垂直,且OA=OB=OC=2,則以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的體積是()A.π8 B.π6 C.π10.已知滿足條件,則目標(biāo)函數(shù)的最小值為A.0 B.1 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若實(shí)數(shù),滿足,則的最小值為________.12.已知?jiǎng)tsin2x的值為________.13.已知,若角的終邊經(jīng)過點(diǎn),求的值.14.設(shè),數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______;15.命題“數(shù)列的前項(xiàng)和”成立的充要條件是________.(填一組符合題意的充要條件即可,所填答案中不得含有字母)16.若數(shù)列滿足(),且,,__.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點(diǎn).已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱錐P-ABC的體積;(2)異面直線BC與AD所成的角的大小(結(jié)果用反三角函數(shù)值表示).18.已知,且(1)求的值;(2)求的值.19.動(dòng)直線m:3x+8y+3λx+λy+21=0(λ∈R)過定點(diǎn)M,直線l過點(diǎn)M且傾斜角α滿足cosα,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)P(Sn,an+1)在直線l上.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)設(shè)bn,數(shù)列{bn}的前n項(xiàng)和Tn,如果對(duì)任意n∈N*,不等式成立,求整數(shù)k的最大值.20.如圖,等腰梯形中,,,,取中點(diǎn),連接,把三角形沿折起,使得點(diǎn)在底面上的射影落在上,設(shè)為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.21.已知函數(shù).(1)求函數(shù)的定義域;(2)當(dāng)為何值時(shí),等式成立?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

直接利用兩點(diǎn)間距離公式求解即可.【題目詳解】因?yàn)閮牲c(diǎn),,則,故選.【題目點(diǎn)撥】本題主要考查向量的模,兩點(diǎn)間距離公式的應(yīng)用.2、D【解題分析】試題分析:設(shè)圓的方程為,且圓過原點(diǎn),即,得,所以圓的方程為.故選D.考點(diǎn):圓的一般方程.3、D【解題分析】本題考查等差數(shù)列的前n項(xiàng)和公式,等差數(shù)列的性質(zhì),二次函數(shù)的性質(zhì).設(shè)公差為則由等差數(shù)列前n項(xiàng)和公式知:是的二次函數(shù);又知對(duì)應(yīng)二次函數(shù)圖像的對(duì)稱軸為于是對(duì)應(yīng)二次函數(shù)為無(wú)法確定所以根據(jù)條件無(wú)法確定有沒有最值;但是根據(jù)二次函數(shù)圖像的對(duì)稱性,必有即故選D4、C【解題分析】

求得,根據(jù),即可判定有兩解,得到答案.【題目詳解】由題意,因?yàn)椋钟?,且,所以有兩?【題目點(diǎn)撥】本題主要考查了三角形解的個(gè)數(shù)的判定,以及正弦定理的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、A【解題分析】試題分析:由題意知圓柱體積×(底面的圓周長(zhǎng)的平方×高),化簡(jiǎn)得:,故選A.考點(diǎn):圓柱的體積公式.6、A【解題分析】

試題分析:連結(jié),異面直線所成角為,設(shè),在中考點(diǎn):異面直線所成角7、D【解題分析】

利用不等式的性質(zhì)依次對(duì)選項(xiàng)進(jìn)行判斷。【題目詳解】對(duì)于A,當(dāng),且異號(hào)時(shí),,故A不正確;對(duì)于B,當(dāng),且都為負(fù)數(shù)時(shí),,故B不正確;對(duì)于C,取,則,故不正確;對(duì)于D,由于,,則,所以,即,故D正確;故答案選D【題目點(diǎn)撥】本題主要考查不等式的基本性質(zhì),在解決此類選擇題時(shí),可以用特殊值法,依次對(duì)選項(xiàng)進(jìn)行排除。8、B【解題分析】

作出異面直線PA與BC所成角,結(jié)合三角形的知識(shí)可求.【題目詳解】取的中點(diǎn),連接,如圖,因?yàn)?,,所以四邊形是平行四邊形,所以;所以或其補(bǔ)角是異面直線PA與BC所成角;設(shè),則,;因?yàn)?,所以;因?yàn)槠矫鍭BCD,所以,在三角形中,.故選:B.【題目點(diǎn)撥】本題主要考查異面直線所成角的求解,作出異面直線所成角,結(jié)合三角形知識(shí)可求.側(cè)重考查直觀想象的核心素養(yǎng).9、B【解題分析】

根據(jù)三棱錐三條側(cè)棱的關(guān)系,得到球與三棱錐的重疊部分為球的18【題目詳解】∵三棱錐O-ABC,側(cè)棱OA,OB,OC兩兩互相垂直,且OA=OB=OC=2,以O(shè)為球心且1為半徑的球與三棱錐O-ABC重疊部分的為球的18即對(duì)應(yīng)的體積為18【題目點(diǎn)撥】本題主要考查球體體積公式的應(yīng)用,解題的關(guān)鍵就是利用三棱錐與球的關(guān)系,考查空間想象能力,屬于中等題。10、C【解題分析】作出不等式區(qū)域如圖所示:求目標(biāo)函數(shù)的最小值等價(jià)于求直線的最小縱截距.平移直線經(jīng)過點(diǎn)A(-2,0)時(shí)最小為-2.故選C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由題意可得=≥2=2,由不等式的性質(zhì)變形可得.【題目詳解】∵正實(shí)數(shù)a,b滿足,∴=≥2=2,∴ab≥2當(dāng)且僅當(dāng)=即a=且b=2時(shí)取等號(hào).故答案為2.【題目點(diǎn)撥】本題考查基本不等式求最值,涉及不等式的性質(zhì),屬基礎(chǔ)題.12、【解題分析】

利用二倍角的余弦函數(shù)公式求出的值,再利用誘導(dǎo)公式化簡(jiǎn),將的值代入計(jì)算即可求出值.【題目詳解】解:∵,,則sin2x==,故答案為.【題目點(diǎn)撥】此題考查了二倍角的余弦函數(shù)公式,以及誘導(dǎo)公式的作用,熟練掌握公式是解本題的關(guān)鍵.13、【解題分析】

由條件利用任意角的三角函數(shù)的定義,求得和的值,從而可得的值.【題目詳解】因?yàn)榻堑慕K邊經(jīng)過點(diǎn),所以,,則.故答案為:【題目點(diǎn)撥】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.14、【解題分析】

根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項(xiàng)按要求排列,再根據(jù)項(xiàng)的序號(hào)計(jì)算出滿足的值即可.【題目詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當(dāng)為奇數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為偶數(shù)時(shí),;用數(shù)學(xué)歸納法證明:任意偶數(shù)項(xiàng)大于相鄰的奇數(shù)項(xiàng)即證:當(dāng)為奇數(shù),,當(dāng)時(shí),符合,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以,所以,所以時(shí)成立,所以當(dāng)為奇數(shù)時(shí),,據(jù)此可知:,當(dāng)時(shí),若,則有,此時(shí)無(wú)解;當(dāng)時(shí),此時(shí)的下標(biāo)成首項(xiàng)為公差為的等差數(shù)列,通項(xiàng)即為,若,所以,所以.故答案為:.【題目點(diǎn)撥】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時(shí),要注意到數(shù)列作為特殊的函數(shù),其定義域?yàn)椋?2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.15、數(shù)列為等差數(shù)列且,.【解題分析】

根據(jù)題意,設(shè)該數(shù)列為,由數(shù)列的前項(xiàng)和公式分析可得數(shù)列為等差數(shù)列且,,反之驗(yàn)證可得成立,綜合即可得答案.【題目詳解】根據(jù)題意,設(shè)該數(shù)列為,若數(shù)列的前項(xiàng)和,則當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),符合,故有數(shù)列為等差數(shù)列且,,反之當(dāng)數(shù)列為等差數(shù)列且,時(shí),,;故數(shù)列的前項(xiàng)和”成立的充要條件是數(shù)列為等差數(shù)列且,,故答案為:數(shù)列為等差數(shù)列且,.【題目點(diǎn)撥】本題考查充分必要條件的判定,關(guān)鍵是掌握充分必要條件的定義,屬于基礎(chǔ)題.16、1【解題分析】

由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別構(gòu)成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【題目詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項(xiàng)構(gòu)成首項(xiàng)為1,公比為,偶數(shù)項(xiàng)構(gòu)成首項(xiàng)為,公比為的等比數(shù)列,當(dāng)為奇數(shù)時(shí),可得,當(dāng)為偶數(shù)時(shí),可得.所以.故答案為:1.【題目點(diǎn)撥】本題主要考查了等比數(shù)列的定義,以及無(wú)窮等比數(shù)列的極限的計(jì)算,其中解答中得出數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別構(gòu)成公比為的等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1),三棱錐P-ABC的體積為.(2)取PB的中點(diǎn)E,連接DE、AE,則ED∥BC,所以∠ADE(或其補(bǔ)角)是異面直線BC與AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,異面直線BC與AD所成的角的大小是.18、(1);(2).【解題分析】

(1)由條件先求得然后再用二倍角公式求;(2)利用角的變換求出,在根據(jù)的范圍確定的值.【題目詳解】(1)因?yàn)?所以,所以,所以;(2)因?yàn)?所以因?yàn)?所以,由(1)得,所以=,因?yàn)?所以.【題目點(diǎn)撥】根據(jù)已知條件求角的步驟:(1)求角的某一個(gè)三角函數(shù)值;(2)確定角的范圍;(3)根據(jù)角的范圍寫出所求的角.在選取函數(shù)時(shí),遵照以下原則:①已知正切函數(shù)值,選正切函數(shù);②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是,選余弦較好;若角的范圍為,選正弦較好.19、(1)an=6?(﹣1)n﹣1;(1)最大值為1.【解題分析】

(1)由直線恒過定點(diǎn)可得M(1,﹣3),求得直線l的方程,可得an+6=1Sn,運(yùn)用數(shù)列的遞推式和等比數(shù)列的通項(xiàng)公式,可得所求;(1)bn?(﹣1)n﹣1,討論n為偶數(shù)或奇數(shù),可得Tn,再由不等式恒成立問題解法,可得所求k的范圍,可得最大值.【題目詳解】(1)3x+8y+3λx+λy+11=0即為(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直線l的斜率為tanα1,即直線l的方程為y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,當(dāng)n=1時(shí),可得a1+6=1S1=1a1,即a1=6,n≥1時(shí),an﹣1+6=1Sn﹣1,又an+6=1Sn,相減可得1an=an﹣an﹣1,即an=﹣an﹣1,可得數(shù)列{an}的通項(xiàng)公式an=6?(﹣1)n﹣1;(1)bn,即bn?(﹣1)n﹣1,當(dāng)n為偶數(shù)時(shí),Tnn;當(dāng)n為奇數(shù)時(shí),Tnn,當(dāng)n為偶數(shù)時(shí),不等式成立,即為1n﹣7即k≤1n﹣1,可得k≤1;當(dāng)n為奇數(shù)時(shí),不等式成立,即為1n﹣7即4k≤6n﹣1,可得k,綜上可得k≤1,即k的最大值為1.【題目點(diǎn)撥】本題考查數(shù)列的遞推式的運(yùn)用,直線方程的運(yùn)用,數(shù)列的分組求和,以及不等式恒成立問題解法,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.20、(1)見解析;(2).【解題分析】

(1)取的中點(diǎn),取的中點(diǎn),連接、、、、,可知、均為等邊三角形,可證明出平面,從而得出,再證明出四邊形為平行四邊形,可得出,由等腰三角形三線合一的性質(zhì)可得,從而可得出,再利用線面垂直的判定定理可證明出平面;(2)過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),連接,證明出平面,可得知二面角的平面角為,計(jì)算出直角三角形三邊邊長(zhǎng),即可求出,即為所求.【題目詳解】(1)如下圖所示,取的中點(diǎn),取的中點(diǎn),連接、、、、,在等腰梯形中,,,,為的中點(diǎn),所以,,又,則,為等邊三角形,同理可知為等邊三角形,為的中點(diǎn),,,,平面,平面,,由于和是邊長(zhǎng)相等的等邊三角形,且為的中點(diǎn),,為的中點(diǎn),.在等腰梯形中,且,則四邊形為平行四邊形,、分別為、的中點(diǎn),且,為的中點(diǎn),且,則四邊形為平行四邊形,,,,平面;(2)過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),連接,由于點(diǎn)在平面內(nèi)的射影點(diǎn)在上,則平面平面,由(1)知,,又平面平面,平面,平面,平面,,,,平面,平面,,所以,二面角的平面角為,在中,,,,,,因此,二面角的余弦值為.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論