版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
西藏林芝地區(qū)一中2023-2024學(xué)年高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.2.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.3.記其中表示不大于x的最大整數(shù),若方程在在有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.4.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.5.設(shè)過(guò)拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個(gè)交點(diǎn)為,則()A. B. C. D.6.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.37.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.8.已知,滿足約束條件,則的最大值為A. B. C. D.9.已知集合,則()A. B. C. D.10.已知直線:過(guò)雙曲線的一個(gè)焦點(diǎn)且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.11.已知展開(kāi)式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-8112.設(shè),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域?yàn)開(kāi)_________.14.點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn)且在△ABC內(nèi)任取一點(diǎn),則此點(diǎn)取自△PBC內(nèi)的概率是____15.已知,在方向上的投影為,則與的夾角為_(kāi)________.16.已知函數(shù)為上的奇函數(shù),滿足.則不等式的解集為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.(1)求拋物線的方程;(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過(guò)做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).18.(12分)這次新冠肺炎疫情,是新中國(guó)成立以來(lái)在我國(guó)發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過(guò)很多磨難,但從來(lái)沒(méi)有被壓垮過(guò),而是愈挫愈勇,不斷在磨難中成長(zhǎng),從磨難中奮起.在這次疫情中,全國(guó)人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開(kāi)了對(duì)這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國(guó)累計(jì)報(bào)告確診病例數(shù)量(單位:萬(wàn)人)之間的關(guān)系如下表:日期1234567全國(guó)累計(jì)報(bào)告確診病例數(shù)量(萬(wàn)人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.19.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.20.(12分)在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上且軸,直線交軸于點(diǎn),,橢圓的離心率為.(1)求橢圓的方程;(2)過(guò)的直線交橢圓于兩點(diǎn),且滿足,求的面積.21.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍;(2)求證:對(duì)上的任意兩個(gè)實(shí)數(shù),,總有成立.22.(10分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
對(duì)函數(shù)求導(dǎo),對(duì)a分類(lèi)討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問(wèn)題,考查了函數(shù)的單調(diào)性及極值問(wèn)題,屬于中檔題.2、A【解析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見(jiàn)幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.3、D【解析】
做出函數(shù)的圖象,問(wèn)題轉(zhuǎn)化為函數(shù)的圖象在有7個(gè)交點(diǎn),而函數(shù)在上有3個(gè)交點(diǎn),則在上有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個(gè)不同的實(shí)數(shù)根,則在上有4個(gè)不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過(guò)時(shí),;當(dāng)直線經(jīng)過(guò)時(shí),,可知當(dāng)時(shí),直線與的圖象在上有4個(gè)交點(diǎn),即方程,在上有4個(gè)不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個(gè)數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問(wèn)題的基本思想,屬于中檔題.4、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問(wèn)題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.5、C【解析】
畫(huà)出圖形,將三角形面積比轉(zhuǎn)為線段長(zhǎng)度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫(xiě)出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長(zhǎng)的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯(cuò)的綜合題.6、B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡(jiǎn)得,所以.故選:B【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎(chǔ)題.7、D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類(lèi)問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.8、D【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類(lèi)問(wèn)題的基本方法.9、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.10、A【解析】
根據(jù)直線:過(guò)雙曲線的一個(gè)焦點(diǎn),得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因?yàn)橹本€:過(guò)雙曲線的一個(gè)焦點(diǎn),所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11、B【解析】
根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過(guò)賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_(kāi)式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過(guò)賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.12、C【解析】試題分析:,.故C正確.考點(diǎn):復(fù)合函數(shù)求值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【詳解】函數(shù)的圖像向右平移個(gè)單位得,,,.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意整體思想的運(yùn)用.14、【解析】
設(shè)是中點(diǎn),根據(jù)已知條件判斷出三點(diǎn)共線且是線段靠近的三等分點(diǎn),由此求得,結(jié)合幾何概型求得點(diǎn)取自三角形的概率.【詳解】設(shè)是中點(diǎn),因?yàn)椋?,所以三點(diǎn)共線且點(diǎn)是線段靠近的三等分點(diǎn),故,所以此點(diǎn)取自內(nèi)的概率是.故答案為:【點(diǎn)睛】本小題主要考查三點(diǎn)共線的向量表示,考查幾何概型概率計(jì)算,屬于基礎(chǔ)題.15、【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀?,即夾角為.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握向量投影的定義是解題關(guān)鍵.16、【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再將所求不等式變形為,利用函數(shù)的單調(diào)性即可得解.【詳解】設(shè),則,設(shè),則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增.所以,函數(shù)在處取得極小值,也是最小值,即,,,,即,所以,函數(shù)在上為增函數(shù),函數(shù)為上的奇函數(shù),則,,則不等式等價(jià)于,又,解得.因此,不等式的解集為.故答案為:.【點(diǎn)睛】本題主要考查不等式的求解,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)根據(jù)題意,設(shè)直線方程為,聯(lián)立方程,根據(jù)拋物線的定義即可得到結(jié)論;(2)根據(jù)題意,設(shè)的方程為,聯(lián)立方程得,同理可得,進(jìn)而得到,再利用點(diǎn)差法得直線的斜率,利用切線與導(dǎo)數(shù)的關(guān)系得直線的斜率,進(jìn)而可得與互補(bǔ).【詳解】(1)由題意設(shè)直線的方程為,令、,聯(lián)立,得,根據(jù)拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設(shè),,設(shè)的方程為,與聯(lián)立消去得,,同理,直線的斜率=切線的斜率,由,即與互補(bǔ).【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,直線斜率的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,屬于中檔題.18、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說(shuō)明它們的線性相關(guān)性越高來(lái)判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫(xiě)出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說(shuō)明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【點(diǎn)睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計(jì)算即可;(2)利用錯(cuò)位相減法計(jì)算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因?yàn)?,所以,即,解得,或(舍去?所以.(2),,所以,所以.(3)由(1)可得,,所以.因?yàn)槭菙?shù)列或中的一項(xiàng),所以,所以,因?yàn)椋?,又,則或.當(dāng)時(shí),有,即,令.則.當(dāng)時(shí),;當(dāng)時(shí),,即.由,知無(wú)整數(shù)解.當(dāng)時(shí),有,即存在使得是數(shù)列中的第2項(xiàng),故存在正整數(shù),使得是數(shù)列中的項(xiàng).【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,數(shù)列中的存在性問(wèn)題,是一道較為綜合的題.20、(1);(2).【解析】
(1)根據(jù)離心率以及,即可列方程求得,則問(wèn)題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,根據(jù)題意中轉(zhuǎn)化出的,即可求得參數(shù),則三角形面積得解.【詳解】(1)設(shè),由題意可得.因?yàn)槭堑闹形痪€,且,所以,即,因?yàn)檫M(jìn)而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當(dāng)直線斜率為時(shí),顯然不成立.直線斜率不為時(shí),設(shè)直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開(kāi)得,整理得,所以.即為所求.【點(diǎn)睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.21、(1)(2)見(jiàn)解析【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),,,利用導(dǎo)數(shù)說(shuō)明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設(shè),∵函數(shù)在上單調(diào)遞增,∴,∴,∴實(shí)數(shù)的取值范圍為.(2)不妨設(shè),,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當(dāng)時(shí),.∵,∴.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人工代加工合作協(xié)議書(shū)范文
- 閑置電視機(jī)購(gòu)買(mǎi)協(xié)議書(shū)范文范本
- 2022年公務(wù)員多省聯(lián)考《申論》真題(寧夏B卷)及答案解析
- 2024年處理廢品合同范本
- 機(jī)關(guān)單位干部三年工作總結(jié)
- 吉林師范大學(xué)《隸書(shū)理論與技法II》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林師范大學(xué)《合唱IV》2021-2022學(xué)年第一學(xué)期期末試卷
- 職業(yè)培訓(xùn)機(jī)構(gòu)招生宣傳方案
- 技術(shù)轉(zhuǎn)讓合作合同范本
- 2024橋梁工程承包合同
- 帷幕灌漿孔原始記錄表
- 《臨床決策分析》課件.ppt
- 淚道沖洗PPT學(xué)習(xí)教案
- 新課程背景下初中語(yǔ)文教學(xué)的轉(zhuǎn)變與創(chuàng)新
- 淺談校園影視在學(xué)校教育中的作用
- 咖啡種植標(biāo)準(zhǔn)化規(guī)程
- 上海大眾汽車(chē)商務(wù)禮儀培訓(xùn)PPT課件
- 理論力學(xué)習(xí)題集含答案
- 驅(qū)動(dòng)壓在肺保護(hù)性通氣策略中的研究進(jìn)展(全文)
- 公路工程施工安全技術(shù)規(guī)范
- “碑學(xué)”、“帖學(xué)”獻(xiàn)疑.doc
評(píng)論
0/150
提交評(píng)論