![云南省文山州五中2024屆高三上數(shù)學(xué)期末考試模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/15/3C/wKhkGWWiwGOAepgwAAHhNxdLD7M363.jpg)
![云南省文山州五中2024屆高三上數(shù)學(xué)期末考試模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/15/3C/wKhkGWWiwGOAepgwAAHhNxdLD7M3632.jpg)
![云南省文山州五中2024屆高三上數(shù)學(xué)期末考試模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/15/3C/wKhkGWWiwGOAepgwAAHhNxdLD7M3633.jpg)
![云南省文山州五中2024屆高三上數(shù)學(xué)期末考試模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/15/3C/wKhkGWWiwGOAepgwAAHhNxdLD7M3634.jpg)
![云南省文山州五中2024屆高三上數(shù)學(xué)期末考試模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/15/3C/wKhkGWWiwGOAepgwAAHhNxdLD7M3635.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省文山州五中2024屆高三上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.2.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.3.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.4.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個(gè)面中,最大面積為()A. B. C. D.5.已知函數(shù),則不等式的解集為()A. B. C. D.6.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.7.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.8.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.29.已知函數(shù),對(duì)任意的,,當(dāng)時(shí),,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對(duì)稱軸是 D.函數(shù)的一個(gè)對(duì)稱中心是10.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),,則使得成立的的取值范圍是()A. B.C. D.11.已知,,若,則向量在向量方向的投影為()A. B. C. D.12.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.120二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四件參賽作品,只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測如下:甲說:“或作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“作品獲得一等獎(jiǎng)”.若這四位同學(xué)中有且只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是______.14.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.15.戊戌年結(jié)束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人,分別奔赴四所不同的學(xué)校參加演講,則不同的分配方案有_________種(用數(shù)字作答),16.設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.19.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.20.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.21.(12分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.22.(10分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.2、D【解析】
按照復(fù)數(shù)的運(yùn)算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】
設(shè),則,,因?yàn)?,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.4、B【解析】
由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個(gè)面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切危?所以該三棱錐的四個(gè)面中,最大面積為.故選:B【點(diǎn)睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.5、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.6、A【解析】
計(jì)算的中點(diǎn)坐標(biāo)為,圓半徑為,得到圓方程.【詳解】的中點(diǎn)坐標(biāo)為:,圓半徑為,圓方程為.故選:.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計(jì)算能力.7、B【解析】
根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長方體,于是得到三棱錐的外接球即為長方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長方體的四個(gè)頂點(diǎn),即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對(duì)角線,對(duì)于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可考慮通過構(gòu)造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.8、C【解析】
作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.9、D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對(duì)于A,,故A錯(cuò)誤;對(duì)于B,由,解得,故B錯(cuò)誤;對(duì)于C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)于D,由,故D正確.故選:D【點(diǎn)睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時(shí),g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時(shí),g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時(shí),f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時(shí),f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運(yùn)用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.11、B【解析】
由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題12、A【解析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡單計(jì)數(shù)問題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、B【解析】
首先根據(jù)“學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng)”,故假設(shè)分別為一等獎(jiǎng),然后判斷甲、乙、丙、丁四位同學(xué)的說法的正確性,即可得出結(jié)果.【詳解】若A為一等獎(jiǎng),則甲、丙、丁的說法均錯(cuò)誤,不滿足題意;若B為一等獎(jiǎng),則乙、丙的說法正確,甲、丁的說法錯(cuò)誤,滿足題意;若C為一等獎(jiǎng),則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎(jiǎng),則乙、丙、丁的說法均錯(cuò)誤,不滿足題意;綜上所述,故B獲得一等獎(jiǎng).【點(diǎn)睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時(shí)候,可以采用依次假設(shè)為一等獎(jiǎng)并通過是否滿足題目條件來判斷其是否正確.14、-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時(shí),在軸截距最大本題正確結(jié)果:【點(diǎn)睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.15、1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,然后用分步計(jì)數(shù)原理求解.【詳解】將六人分成四組,其中兩個(gè)組各2人,另兩個(gè)組各1人有種,再分別奔赴四所不同的學(xué)校參加演講有種,則不同的分配方案有種.故答案為:1080【點(diǎn)睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.16、【解析】
先畫出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點(diǎn)睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】
(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所以,即,所以?shù)列是等差數(shù)列,且公差,其首項(xiàng)所以,解得;(2),①,②①②,得,所以.【點(diǎn)睛】本題考查利用遞推公式證明等差數(shù)列,同時(shí)也考查了錯(cuò)位相減法求和,考查推理能力與計(jì)算能力,屬于中等題.18、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對(duì)值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個(gè)不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對(duì)值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.19、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點(diǎn)睛】本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個(gè)法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.21、(1)故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】試題分析:(Ⅰ)根據(jù)題意得到的解析式和定義域,求導(dǎo)后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷單調(diào)性.(Ⅱ)分析題意可得對(duì)任意,恒成立,構(gòu)造函數(shù),則有對(duì)任意,恒成立,然后通過求函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度土地平整工程土石方采購與施工合同
- 2025版汽車內(nèi)飾件委托加工合同示范文本2篇
- 二零二五年度出口信用保險(xiǎn)借款合同范本3篇
- 2025年度企業(yè)員工培訓(xùn)合作辦學(xué)合同
- 2025年度會(huì)所智能化系統(tǒng)建設(shè)合同書
- 2025年度環(huán)保材料供貨及技術(shù)服務(wù)合同范本
- 2025年度汽車租賃合同免責(zé)條款說明
- 2025年度環(huán)境監(jiān)理項(xiàng)目全過程管理服務(wù)合同
- 2025年國際貿(mào)易咨詢合同范本
- 2025年度國際工程承包項(xiàng)目合同范本
- 2025年華僑港澳臺(tái)學(xué)生聯(lián)招考試英語試卷試題(含答案詳解)
- 2024-2025學(xué)年北京石景山區(qū)九年級(jí)初三(上)期末語文試卷(含答案)
- 第一章 整式的乘除 單元測試(含答案) 2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)下冊(cè)
- JD37-009-2024 山東省存量更新片區(qū)城市設(shè)計(jì)編制技術(shù)導(dǎo)則
- 中國高血壓防治指南(2024年修訂版)
- GB/Z 44765.3-2024用戶端能源管理系統(tǒng)和電網(wǎng)側(cè)管理系統(tǒng)間的接口第3部分:架構(gòu)
- 《春酒》琦君完整版
- 商標(biāo)基礎(chǔ)知識(shí)課件
- 涉詐風(fēng)險(xiǎn)賬戶審查表
- 2023年大學(xué)英語四級(jí)考試模擬真題及答案
- 蘇教版二年級(jí)數(shù)學(xué)寒假輔導(dǎo)提高班課件 第1講 眼花繚亂的數(shù)據(jù)(66張PPT)
評(píng)論
0/150
提交評(píng)論