版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE1202年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷)數(shù)學(xué)本試卷滿分50分.考試時間20分鐘.考生務(wù)必將答案答在答題卡上,在試卷上作答無效.考試結(jié)束后,將本試卷和答題卡一并交回.一、選擇題:本題共0小題,每小題4分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項..已知集合,則()A. B.C. D.【答案】A【解析】【分析】先化簡集合,然后根據(jù)交集的定義計算.【詳解】由題意,,,根據(jù)交集的運(yùn)算可知,.故選:A2.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標(biāo)是,則的共軛復(fù)數(shù)()A. B.C. D.【答案】D【解析】【分析】根據(jù)復(fù)數(shù)的幾何意義先求出復(fù)數(shù),然后利用共軛復(fù)數(shù)的定義計算.【詳解】在復(fù)平面對應(yīng)的點是,根據(jù)復(fù)數(shù)的幾何意義,,由共軛復(fù)數(shù)的定義可知,.故選:D.已知向量滿足,則()A. B. C.0 D.【答案】B【解析】【分析】利用平面向量數(shù)量積的運(yùn)算律,數(shù)量積的坐標(biāo)表示求解作答.【詳解】向量滿足,所以.故選:B4.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B.C. D.【答案】C【解析】【分析】利用基本初等函數(shù)的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性判斷ABC,舉反例排除D即可.【詳解】對于A,因為在上單調(diào)遞增,在上單調(diào)遞減,所以在上單調(diào)遞減,故A錯誤;對于B,因為在上單調(diào)遞增,在上單調(diào)遞減,所以在上單調(diào)遞減,故B錯誤;對于C,因為在上單調(diào)遞減,在上單調(diào)遞減,所以在上單調(diào)遞增,故C正確;對于D,因為,,顯然在上不單調(diào),D錯誤.故選:C.5.的展開式中的系數(shù)為().A. B. C.40 D.80【答案】D【解析】【分析】寫出的展開式的通項即可【詳解】的展開式的通項為令得所以的展開式中的系數(shù)為故選:D【點睛】本題考查的是二項式展開式通項的運(yùn)用,較簡單.6.已知拋物線的焦點為,點在上.若到直線的距離為5,則()A.7 B.6 C.5 D.4【答案】D【解析】【分析】利用拋物線的定義求解即可.【詳解】因為拋物線的焦點,準(zhǔn)線方程為,點在上,所以到準(zhǔn)線的距離為,又到直線的距離為,所以,故.故選:D.7.在中,,則()A. B. C. D.【答案】B【解析】【分析】利用正弦定理的邊角變換與余弦定理即可得解.【詳解】因為,所以由正弦定理得,即,則,故,又,所以.故選:B.8.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【解析】【分析】解法一:由化簡得到即可判斷;解法二:證明充分性可由得到,代入化簡即可,證明必要性可由去分母,再用完全平方公式即可;解法三:證明充分性可由通分后用配湊法得到完全平方公式,再把代入即可,證明必要性可由通分后用配湊法得到完全平方公式,再把代入,解方程即可.【詳解】解法一:因為,且,所以,即,即,所以.所以“”是“”的充要條件.解法二:充分性:因為,且,所以,所以,所以充分性成立;必要性:因為,且,所以,即,即,所以.所以必要性成立.所以“”是“”的充要條件.解法三:充分性:因,且,所以,所以充分性成立;必要性:因為,且,所以,所以,所以,所以,所以必要性成立.所以“”是“”的充要條件.故選:C9.坡屋頂是我國傳統(tǒng)建筑造型之一,蘊(yùn)含著豐富的數(shù)學(xué)元素.安裝燈帶可以勾勒出建筑輪廓,展現(xiàn)造型之美.如圖,某坡屋頂可視為一個五面體,其中兩個面是全等的等腰梯形,兩個面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面與平面的夾角的正切值均為,則該五面體的所有棱長之和為()A. B.C. D.【答案】C【解析】【分析】先根據(jù)線面角的定義求得,從而依次求,,,,再把所有棱長相加即可得解.【詳解】如圖,過做平面,垂足為,過分別做,,垂足分別為,,連接,由題意得等腰梯形所在的面、等腰三角形所在的面與底面夾角分別為和,所以.因為平面,平面,所以,因為,平面,,所以平面,因為平面,所以,.同理:,又,故四邊形是矩形,所以由得,所以,所以,所以在直角三角形中,在直角三角形中,,,又因為,所有棱長之和為.故選:C0.已知數(shù)列滿足,則()A.當(dāng)時,為遞減數(shù)列,且存在常數(shù),使得恒成立B.當(dāng)時,為遞增數(shù)列,且存在常數(shù),使得恒成立C.當(dāng)時,為遞減數(shù)列,且存在常數(shù),使得恒成立D.當(dāng)時,為遞增數(shù)列,且存在常數(shù),使得恒成立【答案】B【解析】【分析】法:利用數(shù)列歸納法可判斷ACD正誤,利用遞推可判斷數(shù)列的性質(zhì),故可判斷B的正誤.法2:構(gòu)造,利用導(dǎo)數(shù)求得的正負(fù)情況,再利用數(shù)學(xué)歸納法判斷得各選項所在區(qū)間,從而判斷的單調(diào)性;對于A,構(gòu)造,判斷得,進(jìn)而取推得不恒成立;對于B,證明所在區(qū)間同時證得后續(xù)結(jié)論;對于C,記,取推得不恒成立;對于D,構(gòu)造,判斷得,進(jìn)而取推得不恒成立.【詳解】法:因為,故,對于A,若,可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時,,此時不等關(guān)系成立;設(shè)當(dāng)時,成立,則,故成立,由數(shù)學(xué)歸納法可得成立.而,,,故,故,故為減數(shù)列,注意故,結(jié)合,所以,故,故,若存在常數(shù),使得恒成立,則,故,故,故恒成立僅對部分成立,故A不成立.對于B,若可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時,,此時不等關(guān)系成立;設(shè)當(dāng)時,成立,則,故成立即由數(shù)學(xué)歸納法可得成立.而,,,故,故,故為增數(shù)列,若,則恒成立,故B正確.對于C,當(dāng)時,可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時,,此時不等關(guān)系成立;設(shè)當(dāng)時,成立,則,故成立即由數(shù)學(xué)歸納法可得成立.而,故,故為減數(shù)列,又,結(jié)合可得:,所以,若,若存在常數(shù),使得恒成立,則恒成立,故,的個數(shù)有限,矛盾,故C錯誤.對于D,當(dāng)時,可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時,,此時不等關(guān)系成立;設(shè)當(dāng)時,成立,則,故成立由數(shù)學(xué)歸納法可得成立.而,故,故為增數(shù)列,又,結(jié)合可得:,所以,若存在常數(shù),使得恒成立,則,故,故,這與n的個數(shù)有限矛盾,故D錯誤.故選:B.法2:因為,令,則,令,得或;令,得;所以在和上單調(diào)遞增,在上單調(diào)遞減,令,則,即,解得或或,注意到,,所以結(jié)合的單調(diào)性可知在和上,在和上,對于A,因為,則,當(dāng)時,,,則,假設(shè)當(dāng)時,,當(dāng)時,,則,綜上:,即,因為在上,所以,則為遞減數(shù)列,因為,令,則,因為開口向上,對稱軸為,所以在上單調(diào)遞減,故,所以在上單調(diào)遞增,故,故,即,假設(shè)存常數(shù),使得恒成立,取,其中,且,因為,所以,上式相加得,,則,與恒成立矛盾,故A錯誤;對于B,因為,當(dāng)時,,,假設(shè)當(dāng)時,,當(dāng)時,因為,所以,則,所以,又當(dāng)時,,即,假設(shè)當(dāng)時,,當(dāng)時,因為,所以,則,所以,綜上:,因為在上,所以,所以為遞增數(shù)列,此時,取,滿足題意,故B正確;對于C,因為,則,注意到當(dāng)時,,,猜想當(dāng)時,,當(dāng)與時,與滿足,假設(shè)當(dāng)時,,當(dāng)時,所以,綜上:,易知,則,故,所以,因為在上,所以,則為遞減數(shù)列,假設(shè)存在常數(shù),使得恒成立,記,取,其中,則,故,所以,即,所以,故不恒成立,故C錯誤;對于D,因為,當(dāng)時,,則,假設(shè)當(dāng)時,,當(dāng)時,,則,綜上:,因為在上,所以,所以為遞增數(shù)列,因為,令,則,因為開口向上,對稱軸為,所以在上單調(diào)遞增,故,所以,故,即,假設(shè)存在常數(shù),使得恒成立,取,其中,且,因為,所以,上式相加得,,則,與恒成立矛盾,故D錯誤.故選:B.【點睛】關(guān)鍵點睛:本題解決的關(guān)鍵是根據(jù)首項給出與通項性質(zhì)相關(guān)的相應(yīng)的命題,再根據(jù)所得命題結(jié)合放縮法得到通項所滿足的不等式關(guān)系,從而可判斷數(shù)列的上界或下界是否成立.二、填空題:本題共5小題,每小題5分,共25分..已知函數(shù),則____________.【答案】【解析】【分析】根據(jù)給定條件,把代入,利用指數(shù)、對數(shù)運(yùn)算計算作答.【詳解】函數(shù),所以.故答案:2.已知雙曲線C的焦點為和,離心率為,則C的方程為____________.【答案】【解析】【分析】根據(jù)給定條件,求出雙曲線的實半軸、虛半軸長,再寫出的方程作答.【詳解】令雙曲線的實半軸、虛半軸長分別為,顯然雙曲線的中心為原點,焦點在x軸上,其半焦距,由雙曲線的離心率為,得,解得,則,所以雙曲線的方程為.故答案為:.已知命題若為第一象限角,且,則.能說明p為假命題的一組的值為__________,_________.【答案】①.②.【解析】【分析】根據(jù)正切函數(shù)單調(diào)性以及任意角的定義分析求解.【詳解】因為在上單調(diào)遞增,若,則,取,則,即,令,則,因為,則,即,則.不妨取,即滿足題意.故答案為:.4.我國度量衡的發(fā)展有著悠久的歷史,戰(zhàn)國時期就已經(jīng)出現(xiàn)了類似于砝碼的、用來測量物體質(zhì)量的“環(huán)權(quán)”.已知9枚環(huán)權(quán)的質(zhì)量(單位:銖)從小到大構(gòu)成項數(shù)為9的數(shù)列,該數(shù)列的前項成等差數(shù)列,后7項成等比數(shù)列,且,則___________;數(shù)列所有項的和為____________.【答案】①.48②.84【解析】【分析】方法一:根據(jù)題意結(jié)合等差、等比數(shù)列的通項公式列式求解,進(jìn)而可求得結(jié)果;方法二:根據(jù)等比中項求,在結(jié)合等差、等比數(shù)列的求和公式運(yùn)算求解.【詳解】方法一:設(shè)前項的公差為,后7項公比為,則,且,可得,則,即,可得,空:可得,空2:方法二:空:因為為等比數(shù)列,則,且,所以;又因為,則;空2:設(shè)后7項公比為,則,解得,可得,所以.故答案為:48;84.5.設(shè),函數(shù),給出下列四個結(jié)論:①在區(qū)間上單調(diào)遞減;②當(dāng)時,存在最大值;③設(shè),則;④設(shè).若存在最小值,則a的取值范圍是.其中所有正確結(jié)論的序號是____________.【答案】②③【解析】【分析】先分析的圖像,再逐一分析各結(jié)論;對于①,取,結(jié)合圖像即可判斷;對于②,分段討論的取值范圍,從而得以判斷;對于③,結(jié)合圖像可知的范圍;對于④,取,結(jié)合圖像可知此時存在最小值,從而得以判斷.【詳解】依題意,,當(dāng)時,,易知其圖像為一條端點取不到值的單調(diào)遞增的射線;當(dāng)時,,易知其圖像是,圓心為,半徑為的圓在軸上方的圖像(即半圓);當(dāng)時,,易知其圖像是一條端點取不到值的單調(diào)遞減的曲線;對于①,取,則的圖像如下,顯然,當(dāng),即時,在上單調(diào)遞增,故①錯誤;對于②,當(dāng)時,當(dāng)時,;當(dāng)時,顯然取得最大值;當(dāng)時,,綜上:取得最大值,故②正確;對于③,結(jié)合圖像,易知在,且接近于處,的距離最小,當(dāng)時,,當(dāng)且接近于處,,此時,,故③正確;對于④,取,則的圖像如下,因為,結(jié)合圖像可知,要使取得最小值,則點在上,點在,同時的最小值為點到的距離減去半圓的半徑,此時,因為的斜率為,則,故直線的方程為,聯(lián)立,解得,則,顯然在上,滿足取得最小值,即也滿足存在最小值,故的取值范圍不僅僅是,故④錯誤.故答案為:②③.【點睛】關(guān)鍵點睛:本題解決的關(guān)鍵是分析得的圖像,特別是當(dāng)時,的圖像為半圓,解決命題④時,可取特殊值進(jìn)行排除即可.三、解答題:本題共6小題,共85分.解答應(yīng)寫出文字說明、證明過程或演算步驟.6.如圖,在三棱錐中,平面,.()求證:平面PAB;(2)求二面角的大?。敬鸢浮浚ǎ┳C明見解析(2)【解析】【分析】()先由線面垂直的性質(zhì)證得,再利用勾股定理證得,從而利用線面垂直的判定定理即可得證;(2)結(jié)合()中結(jié)論,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用空間向量夾角余弦的坐標(biāo)表示即可得解.【小問詳解】因為平面平面,所以,同理,所以為直角三角形,又因為,,所以,則為直角三角形,故,又因為,,所以平面.【小問2詳解】由()平面,又平面,則,以為原點,為軸,過且與平行的直線為軸,為軸,建立空間直角坐標(biāo)系,如圖,則,所以,設(shè)平面的法向量為,則,即令,則,所以,設(shè)平面的法向量為,則,即,令,則,所以,所以,又因為二面角為銳二面角,所以二面角的大小為.7.設(shè)函數(shù).()若,求的值.(2)已知在區(qū)間上單調(diào)遞增,,再從條件①、條件②、條件③這三個條件中選擇一個作為已知,使函數(shù)存在,求的值.條件①:;條件②:;條件③:在區(qū)間上單調(diào)遞減.注:如果選擇的條件不符合要求,第(2)問得0分;如果選擇多個符合要求的條件分別解答,按第一個解答計分.【答案】().(2)條件①不能使函數(shù)存在;條件②或條件③可解得,.【解析】【分析】()把代入的解析式求出,再由即可求出的值;(2)若選條件①不合題意;若選條件②,先把的解析式化簡,根據(jù)在上的單調(diào)性及函數(shù)的最值可求出,從而求出的值;把的值代入的解析式,由和即可求出的值;若選條件③:由的單調(diào)性可知在處取得最小值,則與條件②所給的條件一樣,解法與條件②相同.【小問詳解】因為所以,因為,所以.【小問2詳解】因為,所以,所以的最大值為,最小值為.若選條件①:因為的最大值為,最小值為,所以無解,故條件①不能使函數(shù)存在;若選條件②:因為在上單調(diào)遞增,且,所以,所以,,所以,又因為,所以,所以,所以,因為,所以.所以,;若選條件③:因為在上單調(diào)遞增,在上單調(diào)遞減,所以在處取得最小值,即.以下與條件②相同.8.為研究某種農(nóng)產(chǎn)品價格變化的規(guī)律,收集得到了該農(nóng)產(chǎn)品連續(xù)40天的價格變化數(shù)據(jù),如下表所示.在描述價格變化時,用“+”表示“上漲”,即當(dāng)天價格比前一天價格高;用“-”表示“下跌”,即當(dāng)天價格比前一天價格低;用“0”表示“不變”,即當(dāng)天價格與前一天價格相同.時段價格變化第天到第20天-++0++0+0--+-+00+第2天到第40天0++0++0+0++0-+用頻率估計概率.()試估計該農(nóng)產(chǎn)品價格“上漲”的概率;(2)假設(shè)該農(nóng)產(chǎn)品每天的價格變化是相互獨立的.在未來的日子里任取4天,試估計該農(nóng)產(chǎn)品價格在這4天中2天“上漲”、天“下跌”、天“不變”的概率;()假設(shè)該農(nóng)產(chǎn)品每天的價格變化只受前一天價格變化的影響.判斷第4天該農(nóng)產(chǎn)品價格“上漲”“下跌”和“不變”的概率估計值哪個最大.(結(jié)論不要求證明)【答案】()(2)()不變【解析】【分析】()計算表格中的的次數(shù),然后根據(jù)古典概型進(jìn)行計算;(2)分別計算出表格中上漲,不變,下跌的概率后進(jìn)行計算;()通過統(tǒng)計表格中前一次上漲,后一次發(fā)生的各種情況進(jìn)行推斷第天的情況.【小問詳解】根據(jù)表格數(shù)據(jù)可以看出,天里,有個,也就是有天是上漲的,根據(jù)古典概型的計算公式,農(nóng)產(chǎn)品價格上漲的概率為:【小問2詳解】在這天里,有天上漲,天下跌,天不變,也就是上漲,下跌,不變概率分別是,,,于是未來任取天,天上漲,天下跌,天不變的概率是【小問詳解】由于第天處于上漲狀態(tài),從前次的次上漲進(jìn)行分析,上漲后下一次仍上漲的有次,不變的有次,下跌的有次,因此估計第次不變的概率最大.9.已知橢圓的離心率為,A、C分別是E的上、下頂點,B,D分別是的左、右頂點,.()求的方程;(2)設(shè)為第一象限內(nèi)E上的動點,直線與直線交于點,直線與直線交于點.求證:.【答案】()(2)證明見解析【解析】【分析】()結(jié)合題意得到,,再結(jié)合,解之即可;(2)依題意求得直線、與的方程,從而求得點的坐標(biāo),進(jìn)而求得,再根據(jù)題意求得,得到,由此得解.【小問詳解】依題意,得,則,又分別為橢圓上下頂點,,所以,即,所以,即,則,所以橢圓的方程為.【小問2詳解】因為橢圓的方程為,所以,因為為第一象限上的動點,設(shè),則,易得,則直線的方程為,,則直線的方程為,聯(lián)立,解得,即,而,則直線的方程為,令,則,解得,即,又,則,,所以,又,即,顯然,與不重合,所以.20.設(shè)函數(shù),曲線在點處的切線方程為.()求的值;(2)設(shè)函數(shù),求的單調(diào)區(qū)間;()求的極值點個數(shù).【答案】()(2)答案見解析()個【解析】【分析】()先對求導(dǎo),利用導(dǎo)數(shù)的幾何意義得到,,從而得到關(guān)于的方程組,解之即可;(2)由()得的解析式,從而求得,利用數(shù)軸穿根法求得與的解,由此求得的單調(diào)區(qū)間;()結(jié)合(2)中結(jié)論,利用零點存在定理,依次分類討論區(qū)間,,與上的零點的情況,從而利用導(dǎo)數(shù)與函數(shù)的極值點的關(guān)系求得的極值點個數(shù).【小問詳解】因為,所以,因為在處的切線方程為,所以,,則,解得,所以.【小問2詳解】由()得,則,令,解得,不妨設(shè),,則,易知恒成立,所以令,解得或;令,解得或;所以在,上單調(diào)遞減,在,上單調(diào)遞增,即的單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為和.【小問詳解】由()得,,由(2)知在,上單調(diào)遞減,在,上單調(diào)遞增,當(dāng)時,,,即所以在上存在唯一零點,不妨設(shè)為,則,此時,當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增;所以在上有一個極小值點;當(dāng)時,在上單調(diào)遞減,則,故,所以在上存在唯一零點,不妨設(shè)為,則,此時,當(dāng)時,,則單調(diào)遞增;當(dāng)時,,則單調(diào)遞減;所以在上有一個極大值點;當(dāng)時,在上單調(diào)遞增,則,故,所以在上存在唯一零
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:開放式創(chuàng)新網(wǎng)絡(luò)中“數(shù)字悖論”現(xiàn)象研究:形成機(jī)理、作用機(jī)制和優(yōu)化路徑
- 2025年度企業(yè)臨時工培訓(xùn)與考核合同3篇
- 商場煙感報警系統(tǒng)采購與安裝合同(二零二五年)2篇
- 2025年度個人生育保險代繳服務(wù)合同范本4篇
- 2025版出臺二手房交易稅費(fèi)計算與申報合同3篇
- 二零二五年度餐廳轉(zhuǎn)讓合同范本(含會員卡及積分系統(tǒng))3篇
- 2025年度墓地轉(zhuǎn)賣及墓園墓碑石材更換合同4篇
- 2025年度新能源汽車研發(fā)借款合同范本發(fā)布
- 二零二五年度多功能鏟車租賃與技術(shù)支持合同3篇
- 二零二五年度農(nóng)業(yè)用電變壓器項目融資與風(fēng)險管理合同
- 乳腺癌的綜合治療及進(jìn)展
- 【大學(xué)課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025年八省聯(lián)考高考語文試題真題解讀及答案詳解課件
- 信息安全意識培訓(xùn)課件
- 2024年山東省泰安市初中學(xué)業(yè)水平生物試題含答案
- 美的MBS精益管理體系
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024安全員知識考試題(全優(yōu))
- 法律訴訟及咨詢服務(wù) 投標(biāo)方案(技術(shù)標(biāo))
- 格式塔心理咨詢理論與實踐
- 英語六級詞匯(全)
評論
0/150
提交評論