版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
旋轉(zhuǎn)模型(三十四)——費(fèi)馬點(diǎn)模型費(fèi)馬點(diǎn):到一個(gè)三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn),稱為三角形的費(fèi)馬點(diǎn).當(dāng)PA+PB+PC取最小值時(shí),點(diǎn)P叫三角形的費(fèi)馬點(diǎn).◎結(jié)論:如圖,△ABC的三個(gè)內(nèi)角均不大于120°,點(diǎn)P在形內(nèi),當(dāng)∠BPC=∠APC=∠CPA=120o時(shí),PA+PB+PC的值最小.【證明】如圖,將△ABP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△A1BP1,連接PP1,則△BPP1是等邊三角形,所以PB=PP1.由旋轉(zhuǎn)的性質(zhì)可得PA+PB+PC=P1A1+PP1+PC≥A1C,∴當(dāng)A1、P1、P、C四點(diǎn)共線時(shí),PA+PB+PC的值最小,∵△BPP1是等邊三角形,∠BPP1=60o,∴∠BPC=120o,∵∠APB=∠A1P1B,∠BP1P=60o,∴∠APB=180o-60o=120o則∠CPA=360o-120o-120o=120o,故∠BPC=∠APC=∠CPA=120o.費(fèi)馬點(diǎn)作法:分別以AC、BC、AB為邊作等邊△ACD、△BCE、△ABF,連接CF,BD,AE,由手拉手可得△ACE≌△DCB,△ABE≌△FBC,∴AE=BD,AE=CF,∴AE=BD=CF旋轉(zhuǎn)角:∠BPE=∠EPC=∠CPD=60°eq\o\ac(○,巧)eq\o\ac(○,記)eq\o\ac(○,口)eq\o\ac(○,訣)有等邊,求長度,不好求,作等邊1.(2023·四川·成都實(shí)外九年級階段練習(xí))如圖,在中,,P是內(nèi)一點(diǎn),求的最小值為______.2.(2023·全國·九年級專題練習(xí))如圖,四邊形是菱形,B=6,且∠ABC=60°,M是菱形內(nèi)任一點(diǎn),連接AM,BM,CM,則AM+BM+CM的最小值為________.1.(2023·福建三明·八年級期中)【問題背景】17世紀(jì)有著“業(yè)余數(shù)學(xué)家之王”美譽(yù)的法國律師皮耶·德·費(fèi)馬,提出一個(gè)問題:求作三角形內(nèi)的一個(gè)點(diǎn),使它到三角形三個(gè)頂點(diǎn)的距離之和最小后來這點(diǎn)被稱之為“費(fèi)馬點(diǎn)”.如圖,點(diǎn)是內(nèi)的一點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°到,則可以構(gòu)造出等邊,得,,所以的值轉(zhuǎn)化為的值,當(dāng),,,四點(diǎn)共線時(shí),線段的長為所求的最小值,即點(diǎn)為的“費(fèi)馬點(diǎn)”.(1)【拓展應(yīng)用】如圖1,點(diǎn)是等邊內(nèi)的一點(diǎn),連接,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到.①若,則點(diǎn)與點(diǎn)之間的距離是______;②當(dāng),,時(shí),求的大??;(2)如圖2,點(diǎn)是內(nèi)的一點(diǎn),且,,,求的最小值.2.(2023·江蘇·蘇州工業(yè)園區(qū)星灣學(xué)校八年級期中)背景資料:在已知所在平面上求一點(diǎn)P,使它到三角形的三個(gè)頂點(diǎn)的距離之和最小.這個(gè)問題是法國數(shù)學(xué)家費(fèi)馬1640年前后向意大利物理學(xué)家托里拆利提出的,所求的點(diǎn)被人們稱為“費(fèi)馬點(diǎn)”.如圖1,當(dāng)三個(gè)內(nèi)角均小于120°時(shí),費(fèi)馬點(diǎn)P在內(nèi)部,當(dāng)時(shí),則取得最小值.(1)如圖2,等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求的度數(shù),為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí)這樣就可以利用旋轉(zhuǎn)變換,將三條線段、、轉(zhuǎn)化到一個(gè)三角形中,從而求出_______;知識生成:怎樣找三個(gè)內(nèi)角均小于120°的三角形的費(fèi)馬點(diǎn)呢?為此我們只要以三角形一邊在外側(cè)作等邊三角形并連接等邊三角形的頂點(diǎn)與的另一頂點(diǎn),則連線通過三角形內(nèi)部的費(fèi)馬點(diǎn).請同學(xué)們探索以下問題.(2)如圖3,三個(gè)內(nèi)角均小于120°,在外側(cè)作等邊三角形,連接,求證:過的費(fèi)馬點(diǎn).(3)如圖4,在中,,,,點(diǎn)P為的費(fèi)馬點(diǎn),連接、、,求的值.(4)如圖5,在正方形中,點(diǎn)E為內(nèi)部任意一點(diǎn),連接、、,且邊長;求的最小值.3.(2023·全國·九年級專題練習(xí))如圖,△ABC中,∠BAC=45°,AB=6,AC=4,P為平面內(nèi)一點(diǎn),求最小值1.如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)在軸的正半軸上,,OE為△BOD的中線,過B、兩點(diǎn)的拋物線與軸相交于、兩點(diǎn)(在的左側(cè)).(1)求拋物線的解析式;(2)等邊△的頂點(diǎn)M、N在線段AE上,求AE及的長;(3)點(diǎn)為△內(nèi)的一個(gè)動(dòng)點(diǎn),設(shè),請直接寫出的最小值,以及取得最小值時(shí),線段的長.2.(2023·廣東廣州·一模)如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)P是AB邊上一動(dòng)點(diǎn),作PD⊥BC于點(diǎn)D,線段AD上存在一點(diǎn)Q,當(dāng)QA+QB+QC的值取得最小值,且AQ=2時(shí),則PD=________.旋轉(zhuǎn)模型(三十四)——費(fèi)馬點(diǎn)模型費(fèi)馬點(diǎn):到一個(gè)三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn),稱為三角形的費(fèi)馬點(diǎn).當(dāng)PA+PB+PC取最小值時(shí),點(diǎn)P叫三角形的費(fèi)馬點(diǎn).◎結(jié)論:如圖,△ABC的三個(gè)內(nèi)角均不大于120°,點(diǎn)P在形內(nèi),當(dāng)∠BPC=∠APC=∠CPA=120o時(shí),PA+PB+PC的值最小.【證明】如圖,將△ABP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△A1BP1,連接PP1,則△BPP1是等邊三角形,所以PB=PP1.由旋轉(zhuǎn)的性質(zhì)可得PA+PB+PC=P1A1+PP1+PC≥A1C,∴當(dāng)A1、P1、P、C四點(diǎn)共線時(shí),PA+PB+PC的值最小,∵△BPP1是等邊三角形,∠BPP1=60o,∴∠BPC=120o,∵∠APB=∠A1P1B,∠BP1P=60o,∴∠APB=180o-60o=120o則∠CPA=360o-120o-120o=120o,故∠BPC=∠APC=∠CPA=120o.費(fèi)馬點(diǎn)作法:分別以AC、BC、AB為邊作等邊△ACD、△BCE、△ABF,連接CF,BD,AE,由手拉手可得△ACE≌△DCB,△ABE≌△FBC,∴AE=BD,AE=CF,∴AE=BD=CF旋轉(zhuǎn)角:∠BPE=∠EPC=∠CPD=60°eq\o\ac(○,巧)eq\o\ac(○,記)eq\o\ac(○,口)eq\o\ac(○,訣)有等邊,求長度,不好求,作等邊1.(2023·四川·成都實(shí)外九年級階段練習(xí))如圖,在中,,P是內(nèi)一點(diǎn),求的最小值為______.答案:分析將△APC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△DFC,可得PC=PF,DF=AP,將轉(zhuǎn)化為,此時(shí)當(dāng)B、P、F、D四點(diǎn)共線時(shí),的值最小,最小值為BD的長;根據(jù)勾股定理求解即可.【詳解】解:將△APC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△DFC,連接PF、AD、DB,過點(diǎn)D作DE⊥BA,交BA的延長線于點(diǎn)E;∴AP=DF,∠PCF=∠ACD=,PC=FC,AC=CD,∴△PCF、△ACD是等邊三角形,∴PC=PF,AD=AC=1,∠DAC=∴,∴當(dāng)B、P、F、D四點(diǎn)共線時(shí),的值最小,最小值為BD的長;∵,∠CAD=,∴∠EAD=,∴,∴,∴,∴,∴的值最小值為.故答案為:.【點(diǎn)睛】本題考查費(fèi)馬點(diǎn)問題,解題的關(guān)鍵在于將△APC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△DFC,將三條線段的長轉(zhuǎn)化到一條直線上.2.(2023·全國·九年級專題練習(xí))如圖,四邊形是菱形,B=6,且∠ABC=60°,M是菱形內(nèi)任一點(diǎn),連接AM,BM,CM,則AM+BM+CM的最小值為________.答案:分析以BM為邊作等邊△BMN,以BC為邊作等邊△BCE,如圖,則△BCM≌△BEN,由全等三角形的對應(yīng)邊相等得到CM=NE,進(jìn)而得到AM+MB+CM=AM+MN+NE.當(dāng)A、M、N、E四點(diǎn)共線時(shí)取最小值A(chǔ)E.根據(jù)等腰三角形“三線合一”的性質(zhì)得到BH⊥AE,AH=EH,根據(jù)30°直角三角形三邊的關(guān)系即可得出結(jié)論.【詳解】以BM為邊作等邊△BMN,以BC為邊作等邊△BCE,則BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.當(dāng)A、M、N、E四點(diǎn)共線時(shí)取最小值A(chǔ)E.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=AB=3,AH=BH=,∴AE=2AH=.故答案為.【點(diǎn)睛】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的性質(zhì).難度比較大.作出恰當(dāng)?shù)妮o助線是解答本題的關(guān)鍵.1.(2023·福建三明·八年級期中)【問題背景】17世紀(jì)有著“業(yè)余數(shù)學(xué)家之王”美譽(yù)的法國律師皮耶·德·費(fèi)馬,提出一個(gè)問題:求作三角形內(nèi)的一個(gè)點(diǎn),使它到三角形三個(gè)頂點(diǎn)的距離之和最小后來這點(diǎn)被稱之為“費(fèi)馬點(diǎn)”.如圖,點(diǎn)是內(nèi)的一點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°到,則可以構(gòu)造出等邊,得,,所以的值轉(zhuǎn)化為的值,當(dāng),,,四點(diǎn)共線時(shí),線段的長為所求的最小值,即點(diǎn)為的“費(fèi)馬點(diǎn)”.(1)【拓展應(yīng)用】如圖1,點(diǎn)是等邊內(nèi)的一點(diǎn),連接,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到.①若,則點(diǎn)與點(diǎn)之間的距離是______;②當(dāng),,時(shí),求的大??;(2)如圖2,點(diǎn)是內(nèi)的一點(diǎn),且,,,求的最小值.答案:(1)①3;②150°;(2)分析(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)即可求出的值;②先證△ABP≌,利用全等的性子求出對應(yīng)的邊長,通過勾股定理的逆定理得到,即可求出的大??;(2)將△APC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到,先求出,然后證明為等邊三角形,當(dāng)B、P、、四點(diǎn)共線時(shí),和最小,用勾股定理求出的值即可.(1)①如圖,將繞A逆時(shí)針旋轉(zhuǎn)60°,則,,∴為等邊三角形,;②∵△ABC為等邊三角形,∴AB=AC,∠BAP+∠PAC=60°,又∵是等邊三角形,∴∠PAC+=60°,∴∠BAP=,在△ABP與中,,∴△ABP≌(SAS),∴∴,,,又∵旋轉(zhuǎn),∴;(2)如圖,將△APC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到,則,在中,,,,又∵,,,過作⊥BC交BC的延長線于點(diǎn)D,則,,(30°所對的直角邊等于斜邊的一半),,,為等邊三角形,當(dāng)B、P、、四點(diǎn)共線時(shí),和最小,在中,,,∴的最小值為.【點(diǎn)睛】本題考查了旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),解題的關(guān)鍵在于能夠添加輔助線構(gòu)造全等三角形解決問題.2.(2023·江蘇·蘇州工業(yè)園區(qū)星灣學(xué)校八年級期中)背景資料:在已知所在平面上求一點(diǎn)P,使它到三角形的三個(gè)頂點(diǎn)的距離之和最小.這個(gè)問題是法國數(shù)學(xué)家費(fèi)馬1640年前后向意大利物理學(xué)家托里拆利提出的,所求的點(diǎn)被人們稱為“費(fèi)馬點(diǎn)”.如圖1,當(dāng)三個(gè)內(nèi)角均小于120°時(shí),費(fèi)馬點(diǎn)P在內(nèi)部,當(dāng)時(shí),則取得最小值.(1)如圖2,等邊內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別為3,4,5,求的度數(shù),為了解決本題,我們可以將繞頂點(diǎn)A旋轉(zhuǎn)到處,此時(shí)這樣就可以利用旋轉(zhuǎn)變換,將三條線段、、轉(zhuǎn)化到一個(gè)三角形中,從而求出_______;知識生成:怎樣找三個(gè)內(nèi)角均小于120°的三角形的費(fèi)馬點(diǎn)呢?為此我們只要以三角形一邊在外側(cè)作等邊三角形并連接等邊三角形的頂點(diǎn)與的另一頂點(diǎn),則連線通過三角形內(nèi)部的費(fèi)馬點(diǎn).請同學(xué)們探索以下問題.(2)如圖3,三個(gè)內(nèi)角均小于120°,在外側(cè)作等邊三角形,連接,求證:過的費(fèi)馬點(diǎn).(3)如圖4,在中,,,,點(diǎn)P為的費(fèi)馬點(diǎn),連接、、,求的值.(4)如圖5,在正方形中,點(diǎn)E為內(nèi)部任意一點(diǎn),連接、、,且邊長;求的最小值.答案:(1)150°;(2)見詳解;(3);(4).分析(1)根據(jù)旋轉(zhuǎn)性質(zhì)得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根據(jù)△ABC為等邊三角形,得出∠BAC=60°,可證△APP′為等邊三角形,PP′=AP=3,∠AP′P=60°,根據(jù)勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;(2)將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AB′P′,連結(jié)PP′,根據(jù)△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根據(jù)∠PAP′=∠BAB′=60°,△APP′和△ABB′均為等邊三角形,得出PP′=AP,根據(jù),根據(jù)兩點(diǎn)之間線段最短得出點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,點(diǎn)P在CB′上即可;(3)將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AP′B′,連結(jié)BB′,PP′,得出△APB≌△AP′B′,可證△APP′和△ABB′均為等邊三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根據(jù),可得點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,利用30°直角三角形性質(zhì)得出AB=2AC=2,根據(jù)勾股定理BC=,可求BB′=AB=2,根據(jù)∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;(4)將△BCE逆時(shí)針旋轉(zhuǎn)60°得到△CE′B′,連結(jié)EE′,BB′,過點(diǎn)B′作B′F⊥AB,交AB延長線于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可證△ECE′與△BCB′均為等邊三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出點(diǎn)C,點(diǎn)E,點(diǎn)E′,點(diǎn)B′四點(diǎn)共線時(shí),最小=AB′,根據(jù)四邊形ABCD為正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根據(jù)30°直角三角形性質(zhì)得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根據(jù)勾股定理AB′=即可.(1)解:連結(jié)PP′,∵≌,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC為等邊三角形,∴∠BAC=60°∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,∴△APP′為等邊三角形,,∴PP′=AP=3,∠AP′P=60°,在△P′PC中,PC=5,,∴△PP′C是直角三角形,∠PP′C=90°,∴∠AP′C=∠APP+∠PPC=60°+90°=150°,∴∠APB=∠AP′C=150°,故答案為150°;(2)證明:將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AB′P′,連結(jié)PP′,∵△APB≌△AB′P′,∴AP=AP′,PB=PB′,AB=AB′,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均為等邊三角形,∴PP′=AP,∵,∴點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,∴點(diǎn)P在CB′上,∴過的費(fèi)馬點(diǎn).(3)解:將△APB逆時(shí)針旋轉(zhuǎn)60°,得到△AP′B′,連結(jié)BB′,PP′,∴△APB≌△AP′B′,∴AP′=AP,AB′=AB,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均為等邊三角形,∴PP′=AP,BB′=AB,∠ABB′=60°,∵∴點(diǎn)C,點(diǎn)P,點(diǎn)P′,點(diǎn)B′四點(diǎn)共線時(shí),最小=CB′,∵,,,∴AB=2AC=2,根據(jù)勾股定理BC=∴BB′=AB=2,∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,∴在Rt△CBB′中,B′C=∴最小=CB′=;(4)解:將△BCE逆時(shí)針旋轉(zhuǎn)60°得到△CE′B′,連結(jié)EE′,BB′,過點(diǎn)B′作B′F⊥AB,交AB延長線于F,∴△BCE≌△CE′B′,∴BE=B′E′,CE=CE′,CB=CB′,∵∠ECE′=∠BCB′=60°,∴△ECE′與△BCB′均為等邊三角形,∴EE′=EC,BB′=BC,∠B′BC=60°,∵,∴點(diǎn)C,點(diǎn)E,點(diǎn)E′,點(diǎn)B′四點(diǎn)共線時(shí),最小=AB′,∵四邊形ABCD為正方形,∴AB=BC=2,∠ABC=90°,∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,∵B′F⊥AF,∴BF=,BF=,∴AF=AB+BF=2+,∴AB′=,∴最小=AB′=.【點(diǎn)睛】本題考查圖形旋轉(zhuǎn)性質(zhì),等邊三角形判定與性質(zhì),勾股定理,直角三角形判定與性質(zhì),兩點(diǎn)之間線段最短,四點(diǎn)共線,正方形性質(zhì),30°直角三角形性質(zhì),掌握圖形旋轉(zhuǎn)性質(zhì),等邊三角形判定與性質(zhì),勾股定理,直角三角形判定與性質(zhì),兩點(diǎn)之間線段最短,四點(diǎn)共線,正方形性質(zhì),30°直角三角形性質(zhì)是解題關(guān)鍵.3.(2023·全國·九年級專題練習(xí))如圖,△ABC中,∠BAC=45°,AB=6,AC=4,P為平面內(nèi)一點(diǎn),求最小值答案:分析將△APC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到△A,將△A擴(kuò)大倍,得到△,當(dāng)點(diǎn)B、P、、在同一直線上時(shí),=最短,利用勾股定理求出即可.【詳解】解:如圖,將△APC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,得到△A,將△A擴(kuò)大,相似比為倍,得到△,則,,,過點(diǎn)P作PE⊥A于E,∴AE=,∴E=A-AE=,∴P=,當(dāng)點(diǎn)B、P、、在同一直線上時(shí),=最短,此時(shí)=B,∵∠BA=∠BAC+∠CA=90°,AB=6,,∴.∴=B=【點(diǎn)睛】此題考查旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì),勾股定理,正確理解費(fèi)馬點(diǎn)問題的造圖方法:利用旋轉(zhuǎn)及全等的性質(zhì)構(gòu)建等量的線段,利用三角形的三邊關(guān)系及點(diǎn)共線的知識求解,有時(shí)根據(jù)系數(shù)將圖形擴(kuò)大或縮小構(gòu)建圖形1.如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)在軸的正半軸上,,OE為△BOD的中線,過B、兩點(diǎn)的拋物線與軸相交于、兩點(diǎn)(在的左側(cè)).(1)求拋物線的解析式;(2)等邊△的頂點(diǎn)M、N在線段AE上,求AE及的長;(3)點(diǎn)為△內(nèi)的一個(gè)動(dòng)點(diǎn),設(shè),請直接寫出的最小值,以及取得最小值時(shí),線段的長.答案:(1)
(2);或
(3)可以取到的最小值為.當(dāng)取得最小值時(shí),線段的長為分析(1)已知點(diǎn)B的坐標(biāo),可求出OB的長;在Rt△OBD中,已知了∠ODB=30°,通過解直角三角形即可求得OD的長,也就得到了點(diǎn)D的坐標(biāo);由于E是線段BD的中點(diǎn),根據(jù)B、D的坐標(biāo)即可得到E點(diǎn)的坐標(biāo);將B、E的坐標(biāo)代入拋物線的解析式中,即可求得待定系數(shù)的值,由此確定拋物線的解析式;(2)過E作EG⊥x軸于G,根據(jù)A、E的坐標(biāo),即可用勾股定理求得AE的長;過O作AE的垂線,設(shè)垂足為K,易證得△AOK∽△AEG,通過相似三角形所得比例線段即可求得OK的長;在Rt△OMK中,通過解直角三角形,即可求得MK的值,而AK的長可在Rt△AOK中由勾股定理求得,根據(jù)AM=AK-KM或AM=AK+KM即可求得AM的長;(3)由于點(diǎn)P到△ABO三頂點(diǎn)的距離和最短,那么點(diǎn)P是△ABO的費(fèi)馬點(diǎn),即∠APO=∠OPB=∠APB=120°;易證得△OBE是等邊三角形,那么PA+PO+PB的最小值應(yīng)為AE的長;求AP的長時(shí),可作△OBE的外接圓(設(shè)此圓為⊙Q),那么⊙Q與AE的交點(diǎn)即為m取最小值時(shí)P點(diǎn)的位置;設(shè)⊙Q與x軸的另一交點(diǎn)(O點(diǎn)除外)為H,易求得點(diǎn)Q的坐標(biāo),即可得到點(diǎn)H的坐標(biāo),也就得到了AH的長,相對于⊙Q來說,AE、AH都是⊙Q的割線,根據(jù)割線定理(或用三角形的相似)即可求得AP的長.【詳解】(1)過E作EG⊥OD于G∵∠BOD=∠EGD=90°,∠D=∠D,∴△BOD∽△EGD,∵點(diǎn)B(0,2),∠ODB=30°,可得OB=2,OD=2;∵E為BD中點(diǎn),∴=∴EG=1,GD=∴OG=∴點(diǎn)E的坐標(biāo)為(,1)∵拋物線經(jīng)過、兩點(diǎn),∴.可得.∴拋物線的解析式為.(2)∵拋物線與軸相交于、,在的左側(cè),∴點(diǎn)的坐標(biāo)為.過E作EG⊥x軸于G∴,∴在△AGE中,,.過點(diǎn)作⊥于,可得△∽△.∴.∴.∴∴.∵△是等邊三角形,∴.∴.∴,或
(3)如圖;以AB為邊做等邊三角形AO′B,以O(shè)A為邊做等邊三角形AOB′;易證OE=OB=2,∠OBE=60°,則△OBE是等邊三角形;連接OO′、BB′、AE,它們的交點(diǎn)即為m最小時(shí),P點(diǎn)的位置(即費(fèi)馬點(diǎn));∵OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∴△AOE≌△B′OB;∴∠B′BO=∠AEO;∵∠BOP=∠EOP′,而∠BOE=60°,∴∠POP'=60°,∴△POP′為等邊三角形,∴OP=PP′,∴PA+PB+PO=AP+OP′+P′E=AE;即m最小=AE=如圖;作正△OBE的外接圓⊙Q,根據(jù)費(fèi)馬點(diǎn)的性質(zhì)知∠BPO=120°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文物保護(hù)樣本修復(fù)與管理樣本管理
- 居民社區(qū)智能電梯維護(hù)協(xié)議
- 學(xué)校硅PU施工合同
- 醫(yī)院消防設(shè)施改造合同模板
- 員工行為準(zhǔn)則與規(guī)范
- 地下礦井降水施工分包協(xié)議
- 2022年大學(xué)藥學(xué)專業(yè)大學(xué)物理二月考試題B卷-含答案
- 2022年大學(xué)力學(xué)專業(yè)大學(xué)物理下冊期中考試試題B卷-含答案
- 信息技術(shù)(基礎(chǔ)模塊)(麒麟操作系統(tǒng) WPSOffice)(微課版) 課件 模塊6、7 新一代信息技術(shù)概述、信息素養(yǎng)與社會(huì)責(zé)任
- 質(zhì)量部晉級晉升述職報(bào)告
- 員工心理健康工作講座課件
- 人工智能及其應(yīng)用-計(jì)算智能1課件
- 湘科版四年級上冊科學(xué)期中質(zhì)量檢測卷(2套)(含答案)
- 安徽建筑大學(xué)建筑學(xué)考研真題
- 《旅游線路設(shè)計(jì)與開發(fā)》課程教學(xué)大綱
- 基于PLC的工業(yè)控制系統(tǒng)設(shè)計(jì) -自動(dòng)藥片裝瓶控制
- CRRT規(guī)范化治療方案執(zhí)行課件
- 工程設(shè)計(jì)變更申請表
- 清創(chuàng)術(shù)(debridement)精品課件
- 車間蚊蟲巡檢記錄表
- 新員工培訓(xùn)-財(cái)務(wù)費(fèi)用報(bào)銷sangfor
評論
0/150
提交評論