2024屆山東省安丘市職工子弟校中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2024屆山東省安丘市職工子弟校中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2024屆山東省安丘市職工子弟校中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2024屆山東省安丘市職工子弟校中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2024屆山東省安丘市職工子弟校中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省安丘市職工子弟校中考數(shù)學(xué)對點突破模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AD是⊙O的弦,過點O作AD的垂線,垂足為點C,交⊙O于點F,過點A作⊙O的切線,交OF的延長線于點E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π2.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-33.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點,AF⊥CE于點F,點E在弧AD上從A運動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+34.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.已知關(guān)于x的不等式組至少有兩個整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個 B.5個 C.6個 D.7個6.計算(1-)÷的結(jié)果是()A.x-1 B. C. D.7.安徽省在一次精準(zhǔn)扶貧工作中,共投入資金4670000元,將4670000用科學(xué)記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1078.下面運算結(jié)果為的是A. B. C. D.9.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.10.如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°11.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.12.下列各式計算正確的是()A.a(chǎn)+3a=3a2 B.(–a2)3=–a6 C.a(chǎn)3·a4=a7 D.(a+b)2=a2–2ab+b2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當(dāng)漲了原價的10%后,便不能再漲,叫做漲停;當(dāng)?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.14.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標(biāo)為(,﹣2);⑤當(dāng)x<時,y隨x的增大而減小;⑥a+b+c>0中,正確的有______.(只填序號)15.如果兩圓的半徑之比為,當(dāng)這兩圓內(nèi)切時圓心距為3,那么當(dāng)這兩圓相交時,圓心距d的取值范圍是__________.16.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.17.在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球?qū)嶒灒簩⑶驍噭蚝髲闹须S機摸出一個,記下顏色,再放回袋中,不斷重復(fù).下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是_____.摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率m/n0.580.640.580.590.6050.60118.不等式組的解集為______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組,請結(jié)合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數(shù)軸上表示出來;(4)原不等式組的解集為_____.20.(6分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE21.(6分)如圖,二次函數(shù)的圖象與x軸的一個交點為,另一個交點為A,且與y軸相交于C點求m的值及C點坐標(biāo);在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標(biāo);若不存在,請簡要說明理由為拋物線上一點,它關(guān)于直線BC的對稱點為Q當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo);點P的橫坐標(biāo)為,當(dāng)t為何值時,四邊形PBQC的面積最大,請說明理由.22.(8分)全民學(xué)習(xí)、終身學(xué)習(xí)是學(xué)習(xí)型社會的核心內(nèi)容,努力建設(shè)學(xué)習(xí)型家庭也是一個重要組成部分.為了解“學(xué)習(xí)型家庭”情況,對部分家庭五月份的平均每天看書學(xué)習(xí)時間進行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調(diào)查了個家庭;將圖①中的條形圖補充完整;學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學(xué)習(xí)時間不少于1小時的約有多少個家庭?23.(8分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標(biāo);(2)P(m,t)為拋物線上的一個動點.①當(dāng)點P關(guān)于原點的對稱點P′落在直線BC上時,求m的值;②當(dāng)點P關(guān)于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.24.(10分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.25.(10分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?26.(12分)如圖1,經(jīng)過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.27.(12分)程大位是珠算發(fā)明家,他的名著《直指算法統(tǒng)宗》詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾?。馑际牵河?00個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對于切線的判定:已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.2、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.3、A【解析】

連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設(shè)CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點F在以AC為直徑的⊙M上運動,當(dāng)E從A運動到D時,點F從A運動到H,連接MH,∵MA=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關(guān)鍵.4、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、A【解析】

依據(jù)不等式組至少有兩個整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關(guān)系的運用,求不等式組的解集應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.6、B【解析】

先計算括號內(nèi)分式的加法、將除式分子因式分解,再將除法轉(zhuǎn)化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關(guān)鍵是掌握分式混合運算順序和運算法則.7、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將4670000用科學(xué)記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學(xué)記數(shù)法—表示較大的數(shù),解題的關(guān)鍵是掌握科學(xué)記數(shù)法的概念進行解答.8、B【解析】

根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關(guān)鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.9、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.10、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.11、A【解析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握圓周角定理與勾股定理的應(yīng)用.12、C【解析】

根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

股票一次跌停就跌到原來價格的90%,再從90%的基礎(chǔ)上漲到原來的價格,且漲幅只能≤10%,設(shè)這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設(shè)這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關(guān)鍵是掌握平均變化率的方法,若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為14、①②③⑤【解析】

根據(jù)圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當(dāng)時,y隨x的增大而減?。盛佗冖菡_,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標(biāo)小于﹣2,則④錯誤,當(dāng)x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.15、.【解析】

先根據(jù)比例式設(shè)兩圓半徑分別為,根據(jù)內(nèi)切時圓心距列出等式求出半徑,然后利用相交時圓心距與半徑的關(guān)系求解.【詳解】解:設(shè)兩圓半徑分別為,由題意,得3x-2x=3,解得,則兩圓半徑分別為,所以當(dāng)這兩圓相交時,圓心距d的取值范圍是,即,故答案為.【點睛】本題考查了圓和圓的位置與兩圓的圓心距、半徑的數(shù)量之間的關(guān)系,熟練掌握圓心距與圓位置關(guān)系的數(shù)量關(guān)系是解決本題的關(guān)鍵.16、-3【解析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數(shù)與反比例函數(shù)的交點問題、根與系數(shù)的關(guān)系、勾股定理、圖象上點的坐標(biāo)特征等,題目具有一定的代表性,綜合性強,有一定難度.17、0.1【解析】

根據(jù)表格中的數(shù)據(jù),隨著實驗次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出白球的概率.【詳解】解:觀察表格得:通過多次摸球?qū)嶒灪蟀l(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.1左右,則P白球=0.1.故答案為0.1.【點睛】本題考查了利用頻率估計概率,在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.18、1<x≤1【解析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式組解集為:1<x≤1,故答案為1<x≤1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)x>1;(1)x≤1;(3)答案見解析;(4)1<x≤1.【解析】

根據(jù)一元一次不等式的解法分別解出兩個不等式,根據(jù)不等式的解集的確定方法得到不等式組的解集.【詳解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在數(shù)軸上表示出來:(4)原不等式組的解集為:1<x≤1.【點睛】本題考查了一元一次不等式組的解法,掌握確定解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到是解題的關(guān)鍵.20、證明見解析.【解析】

易證△DAC≌△CEF,即可得證.【詳解】證明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【點睛】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).21、,;存在,;或;當(dāng)時,.【解析】

(1)用待定系數(shù)法求出拋物線解析式;(2)先判斷出面積最大時,平移直線BC的直線和拋物線只有一個交點,從而求出點M坐標(biāo);(3)①先判斷出四邊形PBQC時菱形時,點P是線段BC的垂直平分線,利用該特殊性建立方程求解;②先求出四邊形PBCQ的面積與t的函數(shù)關(guān)系式,從而確定出它的最大值.【詳解】解:(1)將B(4,0)代入,解得,m=4,∴二次函數(shù)解析式為,令x=0,得y=4,∴C(0,4);(2)存在,理由:∵B(4,0),C(0,4),∴直線BC解析式為y=﹣x+4,當(dāng)直線BC向上平移b單位后和拋物線只有一個公共點時,△MBC面積最大,∴,∴,∴△=1﹣4b=0,∴b=4,∴,∴M(2,6);(3)①如圖,∵點P在拋物線上,∴設(shè)P(m,),當(dāng)四邊形PBQC是菱形時,點P在線段BC的垂直平分線上,∵B(4,0),C(0,4),∴線段BC的垂直平分線的解析式為y=x,∴m=,∴m=,∴P(,)或P(,);②如圖,設(shè)點P(t,),過點P作y軸的平行線l,過點C作l的垂線,∵點D在直線BC上,∴D(t,﹣t+4),∵PD=﹣(﹣t+4)=,BE+CF=4,∴S四邊形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=∵0<t<4,∴當(dāng)t=2時,S四邊形PBQC最大=1.考點:二次函數(shù)綜合題;二次函數(shù)的最值;最值問題;分類討論;壓軸題.22、(1)200;(2)見解析;(3)36;(4)該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【解析】

(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);(2)用抽查的總?cè)藬?shù)乘以學(xué)習(xí)0.5-1小時的家庭所占的百分比求出學(xué)習(xí)0.5-1小時的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學(xué)習(xí)2-2.5小時的家庭數(shù),從而補全統(tǒng)計圖;(3)用360°乘以學(xué)習(xí)時間在2~2.5小時所占的百分比,即可求出學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學(xué)習(xí)時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學(xué)習(xí)0.5﹣1小時的家庭數(shù)有:200×=60(個),學(xué)習(xí)2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖及相關(guān)計算.在扇形統(tǒng)計圖中,每部分占總部分的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比.23、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標(biāo)為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】

(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標(biāo),再根據(jù)函數(shù)解析式可以求得點B的坐標(biāo),進而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當(dāng)P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標(biāo)為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關(guān)于原點對稱,∴P′(﹣m,﹣t),當(dāng)y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設(shè)直線BC對應(yīng)的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當(dāng)t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【點睛】本題是二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.24、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識.注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出.還要注意構(gòu)造直徑所對的圓周角是圓中的常見輔助線.25、(2)證明見試題解析;(2).【解析】

(2)過點O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數(shù)求得OM和BM的長,進而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點O作OM⊥AB,垂足是M.∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=.考點:2.切線的判定與性質(zhì);2.勾股定理;3.解直角三角形;4.綜合題.26、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設(shè)出C點坐標(biāo),利用C點坐標(biāo)可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關(guān)于C點坐標(biāo)的方程,可求得C點坐標(biāo);(3)設(shè)MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點坐標(biāo),過M作MG⊥y軸于點G,由B、C的坐標(biāo)可求得OB和OC的長,由相似三角形的性質(zhì)可求得的值,當(dāng)點P在第一象限內(nèi)時,過P作PH⊥x軸于點H,由條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論