版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省香洲區(qū)四校聯(lián)考初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.2.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標(biāo)是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設(shè)點B的對應(yīng)點B′的橫坐標(biāo)是a,則點B的橫坐標(biāo)是()A. B. C. D.3.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應(yīng)值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側(cè)C.有兩個交點,且它們均在軸同側(cè) D.無交點4.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)5.cos60°的值等于()A.1 B. C. D.6.方程的解是().A. B. C. D.7.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤48.如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)9.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.410.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE二、填空題(共7小題,每小題3分,滿分21分)11.分式與的最簡公分母是_____.12.因式分解:________.13.在一個不透明的口袋中,有3個紅球、2個黃球、一個白球,它們除顏色不同之外其它完全相同,現(xiàn)從口袋中隨機(jī)摸出一個球記下顏色后放回,再隨機(jī)摸出一個球,則兩次摸到一個紅球和一個黃球的概率是_____.14.如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.15.將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x﹣3,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,若將△ABC向右滾動,則x的值等于_____,數(shù)字2012對應(yīng)的點將與△ABC的頂點_____重合.16.不等式組的最大整數(shù)解是__________.17.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機(jī)摸出兩球,都是紅球的概率為_________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.19.(5分)如圖,網(wǎng)格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉(zhuǎn)中心,分別畫出把順時針旋轉(zhuǎn),后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設(shè)的三邊,,,請證明勾股定理.20.(8分)如圖,已知?ABCD.作∠B的平分線交AD于E點。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);若?ABCD的周長為10,CD=2,求DE的長。21.(10分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.22.(10分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機(jī)抽取了4個班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)??偨Y(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.23.(12分)某中學(xué)九年級數(shù)學(xué)興趣小組想測量建筑物AB的高度他們在C處仰望建筑物頂端A處,測得仰角為,再往建筑物的方向前進(jìn)6米到達(dá)D處,測得仰角為,求建筑物的高度測角器的高度忽略不計,結(jié)果精確到米,,24.(14分)講授“軸對稱”時,八年級教師設(shè)計了如下:四種教學(xué)方法:①教師講,學(xué)生聽②教師讓學(xué)生自己做③教師引導(dǎo)學(xué)生畫圖發(fā)現(xiàn)規(guī)律④教師讓學(xué)生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調(diào)查教學(xué)效果,八年級教師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到全年級8個班420名同學(xué)手中,要求每位同學(xué)選出自己最喜歡的一種.他隨機(jī)抽取了60名學(xué)生的調(diào)查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學(xué)中最喜歡的教學(xué)方法是哪一種?選擇這種教學(xué)方法的約有多少人?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;
B、不是軸對稱圖形,是中心對稱圖形,不符合題意;
C、不是軸對稱圖形,是中心對稱圖形,不符合題意;
D、是軸對稱圖形,符合題意.
故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.2、D【解析】
設(shè)點B的橫坐標(biāo)為x,然后表示出BC、B′C的橫坐標(biāo)的距離,再根據(jù)位似變換的概念列式計算.【詳解】設(shè)點B的橫坐標(biāo)為x,則B、C間的橫坐標(biāo)的長度為﹣1﹣x,B′、C間的橫坐標(biāo)的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標(biāo)與圖形的性質(zhì),根據(jù)位似變換的定義,利用兩點間的橫坐標(biāo)的距離等于對應(yīng)邊的比列出方程是解題的關(guān)鍵.3、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側(cè)故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.4、D【解析】
原式分解因式,判斷即可.【詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【點睛】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.5、A【解析】
根據(jù)特殊角的三角函數(shù)值直接得出結(jié)果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關(guān)鍵.6、B【解析】
直接解分式方程,注意要驗根.【詳解】解:=0,方程兩邊同時乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個一元一次方程,得:x=,經(jīng)檢驗,x=是原方程的解.故選B.【點睛】本題考查了解分式方程,解分式方程不要忘記驗根.7、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.8、A【解析】
直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關(guān)系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設(shè)NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負(fù)數(shù)舍去),則NO=,NC1=,故點C的對應(yīng)點C1的坐標(biāo)為:(-,).故選A.【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關(guān)鍵.9、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進(jìn)行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.10、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.二、填空題(共7小題,每小題3分,滿分21分)11、3a2b【解析】
利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點睛】本題考查最簡公分母,解題的關(guān)鍵是掌握求最簡公分母的方法.12、n(m+2)(m﹣2)【解析】
先提取公因式n,再利用平方差公式分解即可.【詳解】m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..故答案為n(m+2)(m﹣2).【點睛】本題主要考查了提取公因式法和公式法分解因式,熟練掌握平方差公式是解題關(guān)鍵13、【解析】
先畫樹狀圖展示所有36種等可能的結(jié)果數(shù),再找出兩次摸到一個紅球和一個黃球的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖如下:由樹狀圖可知,共有36種等可能結(jié)果,其中兩次摸到一個紅球和一個黃球的結(jié)果數(shù)為12,所以兩次摸到一個紅球和一個黃球的概率為,故答案為.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.14、4或8【解析】
由平移的性質(zhì)可知陰影部分為平行四邊形,設(shè)A′D=x,根據(jù)題意陰影部分的面積為(12?x)×x,即x(12?x),當(dāng)x(12?x)=32時,解得:x=4或x=8,所以AA′=8或AA′=4?!驹斀狻吭O(shè)AA′=x,AC與A′B′相交于點E,∵△ACD是正方形ABCD剪開得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD?AA′=12?x,∵兩個三角形重疊部分的面積為32,∴x(12?x)=32,整理得,x?12x+32=0,解得x=4,x=8,即移動的距離AA′等4或8.【點睛】本題考查正方形和圖形的平移,熟練掌握計算法則是解題關(guān)鍵·.15、﹣1C.【解析】∵將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設(shè)點A表示的數(shù)為x﹣1,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數(shù)為:x﹣1=﹣1﹣1=﹣6,點B表示的數(shù)為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數(shù)字2012對應(yīng)的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點滾動672周,∴數(shù)字2012對應(yīng)的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質(zhì),實數(shù)與數(shù)軸,一元一次方程等知識,本題將數(shù)與式的考查有機(jī)地融入“圖形與幾何”中,滲透“數(shù)形結(jié)合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動型問題.16、【解析】
先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【點睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.17、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結(jié)果個數(shù)除以所有可能的結(jié)果個數(shù)即可.【詳解】∵從中隨意摸出兩個球的所有可能的結(jié)果個數(shù)是12,隨意摸出兩個球是紅球的結(jié)果個數(shù)是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解析】
(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點,∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點睛:本題主要考查正方形的性質(zhì)及全等三角形的判定和性質(zhì),矩形的判定與性質(zhì),菱形的判定等,作出輔助線是解決(1)的關(guān)鍵.在(2)中證得△ABN≌△HFE是解題的關(guān)鍵.19、(1)見解析;(2)①正方形;②;③見解析.【解析】
(1)根據(jù)旋轉(zhuǎn)作圖的方法進(jìn)行作圖即可;(2)①根據(jù)旋轉(zhuǎn)的性質(zhì)可證AC=BC1=B1C2=B2C3,從而證出四邊形CC1C2C3是菱形,再根據(jù)有一個角是直角的菱形是正方形即可作出判斷,同理可判斷四邊形ABB1B2是正方形;②根據(jù)相似圖形的面積之比等相似比的平方即可得到結(jié)果;③用兩種不同的方法計算大正方形的面積化簡即可得到勾股定理.【詳解】(1)如圖,(2)①四邊形CC1C2C3和四邊形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根據(jù)旋轉(zhuǎn)的性質(zhì)可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四邊形CC1C2C3和四邊形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四邊形CC1C2C3和四邊形ABB1B2是正方形.②∵四邊形CC1C2C3和四邊形ABB1B2是正方形,∴四邊形CC1C2C3∽四邊形ABB1B2.∴=∵AB=,CC1=,∴==.③四邊形CC1C2C3的面積==,四邊形CC1C2C3的面積=4△ABC的面積+四邊形ABB1B2的面積=4+=∴=,化簡得:=.【點睛】本題考查了旋轉(zhuǎn)作圖和旋轉(zhuǎn)的性質(zhì),正方形的判定和性質(zhì),勾股定理,掌握相關(guān)知識是解題的關(guān)鍵.20、(1)作圖見解析;(2)1【解析】
(1)以點B為圓心,任意長為半徑畫弧分別與AB、BC相交。然后再分別以交點為圓心,以交點間的距離為半徑分別畫弧,兩弧相交于一點,畫出射線BE即得.(2)根據(jù)平行四邊形的對邊相等,可得AB+AD=5,由兩直線平行內(nèi)錯角相等可得∠AEB=∠EBC,利用角平分線即得∠ABE=∠EBC,即證∠AEB=∠ABE.根據(jù)等角對等邊可得AB=AE=2,從而求出ED的長.【詳解】(1)解:如圖所示:(2)解:∵平行四邊形ABCD的周長為10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【點睛】此題考查作圖-基本作圖和平行四邊形的性質(zhì),解題關(guān)鍵在于掌握作圖法則21、(1)詳見解析;(2)10.【解析】
①只需證明兩對對應(yīng)角分別相等可得兩個三角形相似;故.
②根據(jù)相似三角形的性質(zhì)求出PC長以及AP與OP的關(guān)系,然后在Rt△PCO中運用勾股定理求出OP長,從而求出AB長.【詳解】①∵四邊形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°?∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP與△PDA的面積比為1:4,∴OCPD=OPPA=CPDA=14??√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.設(shè)OP=x,則OB=x,CO=8?x.在△PCO中,∵∠C=90°,CP=4,OP=x,CO=8?x,∴x2=(8?x)2+42.解得:x=5.∴AB=AP=2OP=10.∴邊AB的長為10.【點睛】本題考查了相似三角形的判定與性質(zhì)以及翻轉(zhuǎn)變換,解題的關(guān)鍵是熟練的掌握相似三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆上海市市三女中數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析
- 2025屆江西省吉安市峽江縣峽江中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析
- 貴州省黔東南州劍河縣第四中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析
- 2025屆云南省邵通市水富縣云天化中學(xué)高二生物第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 2024年個人房屋買賣合同簡單
- 2024年幼兒園承包合同協(xié)議書
- 貴州省2025屆生物高三上期末考試模擬試題含解析
- 2025屆廣東省肇慶市實驗中學(xué)生物高三上期末聯(lián)考試題含解析
- 2025屆天津市大白高中高一數(shù)學(xué)第一學(xué)期期末考試試題含解析
- GB/T 44146-2024基于InSAR技術(shù)的地殼形變監(jiān)測規(guī)范
- 2024年湖南省中考英語試題卷(含答案)
- 卡通版名人介紹竺可楨的故事
- 2024年《公務(wù)員法》相關(guān)法律法規(guī)知識考試題庫實驗班
- 椎管內(nèi)麻醉的相關(guān)新進(jìn)展
- 河北省衡水中學(xué)2022-2023學(xué)年高一上學(xué)期綜合素質(zhì)檢測二數(shù)學(xué)試題含解析
- 《中國潰瘍性結(jié)腸炎診治指南(2023年)》解讀
- 辦理寬帶拆機(jī)委托書
- 一線員工安全心得體會范文(3篇)
- 2高空作業(yè)安全技術(shù)交底(涉及高空作業(yè)者交底后必須簽字)
- 牛頓第三定律說課市公開課一等獎省賽課微課金獎?wù)n件
評論
0/150
提交評論