安徽省宿州市宿城一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
安徽省宿州市宿城一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
安徽省宿州市宿城一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
安徽省宿州市宿城一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
安徽省宿州市宿城一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

安徽省宿州市宿城一中學(xué)2024屆中考適應(yīng)性考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個(gè)根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定2.一個(gè)正多邊形的內(nèi)角和為900°,那么從一點(diǎn)引對角線的條數(shù)是()A.3 B.4 C.5 D.63.民族圖案是數(shù)學(xué)文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()

A. B. C. D.4.如圖,已知矩形ABCD中,BC=2AB,點(diǎn)E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.5.在一個(gè)不透明的袋子中裝有除顏色外其余均相同的m個(gè)小球,其中5個(gè)黑球,從袋中隨機(jī)摸出一球,記下其顏色,這稱為依次摸球試驗(yàn),之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計(jì)算機(jī)模擬的摸球試驗(yàn)次數(shù)與摸出黑球次數(shù)的列表:摸球試驗(yàn)次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計(jì)出m的值是()A.5 B.10 C.15 D.206.關(guān)于的不等式的解集如圖所示,則的取值是A.0 B. C. D.7.下列實(shí)數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π8.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°9.方程2x+3=1A.x=3 B.x=4 C.x=5 D.x=﹣510.下列事件中必然發(fā)生的事件是()A.一個(gè)圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時(shí)乘以一個(gè)數(shù),結(jié)果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知關(guān)于x的方程x2+mx+4=0有兩個(gè)相等的實(shí)數(shù)根,則實(shí)數(shù)m的值是______.12.閱讀材料:如圖,C為線段BD上一動點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長為.然后利用幾何知識可知:當(dāng)A、C、E在一條直線上時(shí),x=時(shí),AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_____.13.某商品原價(jià)100元,連續(xù)兩次漲價(jià)后,售價(jià)為144元.若平均每次增長率為x,則x=__________.14.化簡:________.15.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點(diǎn)A,B,C;直線DF分別交l1,l2,l3于點(diǎn)D,E,F(xiàn).AC與DF相交于點(diǎn)H,且AH=2,HB=1,BC=5,則DEEF的值為16.欣欣超市為促銷,決定對A,B兩種商品統(tǒng)一進(jìn)行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.三、解答題(共8題,共72分)17.(8分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?18.(8分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個(gè)單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.19.(8分)如圖,某人在山坡坡腳C處測得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)(測傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.4°≈2)20.(8分)已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).(1)求此拋物線的表達(dá)式;(2)如果點(diǎn)A關(guān)于該拋物線對稱軸的對稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.21.(8分)某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為______%,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加?;@球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.22.(10分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)23.(12分)如圖,已知點(diǎn)C是∠AOB的邊OB上的一點(diǎn),求作⊙P,使它經(jīng)過O、C兩點(diǎn),且圓心在∠AOB的平分線上.24.如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點(diǎn)為F,F(xiàn)H∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

首先求出方程的根,再利用半徑長度,由點(diǎn)O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合題意舍去),x2=6,

∵點(diǎn)O到直線l距離是方程x2-4x-12=0的一個(gè)根,即為6,

∴點(diǎn)O到直線l的距離d=6,r=5,

∴d>r,

∴直線l與圓相離.故選:C【點(diǎn)睛】本題考核知識點(diǎn):直線與圓的位置關(guān)系.解題關(guān)鍵點(diǎn):理解直線與圓的位置關(guān)系的判定方法.2、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個(gè)多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點(diǎn)引對角線的條數(shù).【詳解】設(shè)這個(gè)正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個(gè)正多邊形是正七邊形.所以,從一點(diǎn)引對角線的條數(shù)是:1-3=4.故選B【點(diǎn)睛】本題考核知識點(diǎn):多邊形的內(nèi)角和.解題關(guān)鍵點(diǎn):熟記多邊形內(nèi)角和公式.3、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項(xiàng)錯(cuò)誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項(xiàng)正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.4、C【解析】

過點(diǎn)A作AF⊥DE于F,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質(zhì)以及矩形的性質(zhì)解答即可.【詳解】解:如圖,過點(diǎn)A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì),角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),以及全等三角形的判定與性質(zhì),關(guān)鍵是根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得AF=AB.5、B【解析】

由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒?yàn)次數(shù)的值總是在0.5左右,則由題意可得5故選擇B.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.6、D【解析】

首先根據(jù)不等式的性質(zhì),解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點(diǎn)睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.7、D【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時(shí)理解有理數(shù)的概念,有理數(shù)是整數(shù)與分?jǐn)?shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項(xiàng).【詳解】A、﹣5是整數(shù),是有理數(shù),選項(xiàng)錯(cuò)誤;B、是分?jǐn)?shù),是有理數(shù),選項(xiàng)錯(cuò)誤;C、0是整數(shù),是有理數(shù),選項(xiàng)錯(cuò)誤;D、π是無理數(shù),選項(xiàng)正確.故選D.【點(diǎn)睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.9、C【解析】方程兩邊同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,檢驗(yàn):當(dāng)x=5時(shí),(x-1)(x+3)≠0,所以x=5是原方程的解,故選C.10、C【解析】

直接利用隨機(jī)事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個(gè)圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項(xiàng)錯(cuò)誤;B、不等式的兩邊同時(shí)乘以一個(gè)數(shù),結(jié)果仍是不等式,是隨機(jī)事件,故此選項(xiàng)錯(cuò)誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項(xiàng)正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機(jī)事件,故此選項(xiàng)錯(cuò)誤;故選C.【點(diǎn)睛】此題主要考查了隨機(jī)事件、必然事件、不可能事件,正確把握相關(guān)定義是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、±4【解析】分析:由方程有兩個(gè)相等的實(shí)數(shù)根,得到根的判別式等于0,列出關(guān)于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:故答案為點(diǎn)睛:考查一元二次方程根的判別式,當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.當(dāng)時(shí),方程沒有實(shí)數(shù)根.12、4【解析】

根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長,進(jìn)而利用勾股定理得出最短路徑問題.【詳解】如圖所示:C為線段BD上一動點(diǎn),分別過點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=5,DE=3,BD=12,當(dāng)A,C,E,在一條直線上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當(dāng)x=時(shí),代數(shù)式有最小值,此時(shí)為:.故答案是:4.【點(diǎn)睛】考查最短路線問題,利用了數(shù)形結(jié)合的思想,可通過構(gòu)造直角三角形,利用勾股定理求解.13、20%.【解析】試題分析:根據(jù)原價(jià)為100元,連續(xù)兩次漲價(jià)x后,現(xiàn)價(jià)為144元,根據(jù)增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點(diǎn):一元二次方程的應(yīng)用.14、【解析】

根據(jù)平面向量的加法法則計(jì)算即可【詳解】.故答案為:【點(diǎn)睛】本題考查平面向量的加減法則,解題的關(guān)鍵是熟練掌握平面向量的加減法則,注意平面向量的加減適合加法交換律以及結(jié)合律,適合去括號法則.15、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點(diǎn):平行線分線段成比例.16、1【解析】

設(shè)A、B兩種商品的售價(jià)分別是1件x元和1件y元,根據(jù)題意列出x和y的二元一次方程組,解方程組求出x和y的值,進(jìn)而求解即可.【詳解】解:設(shè)A、B兩種商品的售價(jià)分別是1件x元和1件y元,根據(jù)題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點(diǎn)睛】本題考查了利用二元一次方程組解決現(xiàn)實(shí)生活中的問題.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程組,再求解.三、解答題(共8題,共72分)17、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費(fèi)用最少;(3)當(dāng)a=3時(shí),三種方案的費(fèi)用一樣,都是2240萬元;當(dāng)a>3時(shí),取m=48時(shí)費(fèi)用最省;當(dāng)0<a<3時(shí),取m=50時(shí)費(fèi)用最省.【解析】試題分析:(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費(fèi)用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關(guān)系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,依題意,得625解得:x=25經(jīng)檢驗(yàn):x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費(fèi)用分別為25萬元,28萬元.(2)設(shè)甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設(shè)提升兩種套房所需要的費(fèi)用為W.所以當(dāng)時(shí),費(fèi)用最少,即第三種方案費(fèi)用最少.(3)在(2)的基礎(chǔ)上有:當(dāng)a=3時(shí),三種方案的費(fèi)用一樣,都是2240萬元.當(dāng)a>3時(shí),取m=48時(shí)費(fèi)用W最省.當(dāng)0<a<3時(shí),取m=50時(shí)費(fèi)用最省.考點(diǎn):1.一次函數(shù)的應(yīng)用;2.分式方程的應(yīng)用;3.一元一次不等式組的應(yīng)用.18、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】

(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個(gè)階段:①當(dāng)0<t≤時(shí),如答圖2所示,此時(shí)重疊部分為一個(gè)四邊形;②當(dāng)<t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個(gè)三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過點(diǎn)作軸于點(diǎn)M,則,,.過點(diǎn)作于點(diǎn),則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個(gè)單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當(dāng)時(shí),如答圖2所示:設(shè)與交于點(diǎn),可得,.設(shè)與的交點(diǎn)為,則:.解得,∴..(2)當(dāng)時(shí),如答圖3所示:設(shè)分別與交于點(diǎn)、點(diǎn).∵,∴,.直線解析式為,令,得,∴..綜上所述,與的函數(shù)關(guān)系式為:.19、(1)此人所在P的鉛直高度約為14.3米;(2)從P到點(diǎn)B的路程約為17.1米【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設(shè)PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.詳解:過P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,設(shè)PF=5x,CF=1x,∵四邊形BFPE為矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=,∴x=,∴PF=5x=.答:此人所在P的鉛直高度約為14.3米.由(1)得CP=13x,∴CP=13×37.1,BC+CP=90+37.1=17.1.答:從P到點(diǎn)B的路程約為17.1米.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用,關(guān)鍵是正確的畫出與實(shí)際問題相符合的幾何圖形,找出圖形中的相關(guān)線段或角的實(shí)際意義及所要解決的問題,構(gòu)造直角三角形,用勾股定理或三角函數(shù)求相應(yīng)的線段長.20、(1)y=-(x-3)2+5(2)5【解析】

(1)設(shè)頂點(diǎn)式y(tǒng)=a(x-3)2+5,然后把A點(diǎn)坐標(biāo)代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達(dá)式為y=a(x-3)2+5,將點(diǎn)A(1,3)的坐標(biāo)代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達(dá)式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.21、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補(bǔ)全條形圖;(5)畫樹狀圖可得所有可能的情況,根據(jù)樹狀圖求得2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果,根據(jù)概率公式進(jìn)行計(jì)算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計(jì)全校學(xué)生中有80人喜歡籃球項(xiàng)目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果數(shù)為12,所以所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率=.22、(1)①;②;(2)150+475+475.【解析】

(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點(diǎn)A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點(diǎn)共圓,作AC、CD中垂線,交點(diǎn)即為圓心O,當(dāng)點(diǎn)D與AC的距離最大時(shí),△ACD的面積最大,AC的中垂線交圓O于點(diǎn)D',交AC于F,F(xiàn)D'即為所求最大值,再求得

△ACD′的面積即可.【詳解】(1)①因?yàn)椤螧=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時(shí)BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點(diǎn)A作AE⊥CB交CB的延長線于E,因?yàn)锳B=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論