陜西省咸陽市秦都區(qū)重點達標名校2024屆中考數(shù)學猜題卷含解析_第1頁
陜西省咸陽市秦都區(qū)重點達標名校2024屆中考數(shù)學猜題卷含解析_第2頁
陜西省咸陽市秦都區(qū)重點達標名校2024屆中考數(shù)學猜題卷含解析_第3頁
陜西省咸陽市秦都區(qū)重點達標名校2024屆中考數(shù)學猜題卷含解析_第4頁
陜西省咸陽市秦都區(qū)重點達標名校2024屆中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

陜西省咸陽市秦都區(qū)重點達標名校2024屆中考數(shù)學猜題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥32.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a(chǎn)=b?cosA B.c=a?sinA C.a(chǎn)?cotA=b D.a(chǎn)?tanA=b4.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.5.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=66.“a是實數(shù),|a|≥0”這一事件是()A.必然事件 B.不確定事件 C.不可能事件 D.隨機事件7.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣28.﹣22×3的結果是()A.﹣5 B.﹣12 C.﹣6 D.129.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a(chǎn)= B.a(chǎn)=2b C.a(chǎn)=b D.a(chǎn)=3b10.的算術平方根為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標系中,已知線段AB的兩個端點的坐標分別是A(4,-1)、B(1,1),將線段AB平移后得到線段A′B′,若點A′的坐標為(-2,2),則點B′的坐標為________.12.對于任意不相等的兩個實數(shù),定義運算※如下:※=,如3※2==.那么8※4=.13.如圖,直線經(jīng)過、兩點,則不等式的解集為_______.14.若分式的值為正,則實數(shù)的取值范圍是__________________.15.如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點,則∠EDF等于__________°.16.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.17.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點O順時針旋轉90°后得到Rt△FOE,將線段EF繞點E逆時針旋轉90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知,,.求證:.19.(5分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結果;若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?20.(8分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.21.(10分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.23.(12分)在數(shù)學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據(jù)學習函數(shù)的經(jīng)驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F(xiàn)兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;(4)結合畫出的函數(shù)圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.24.(14分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:根據(jù)關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.2、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.3、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項C正確,故選C.【點睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運用是解題的關鍵.4、D【解析】

根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關鍵.5、D【解析】

本題應對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.本題運用的是因式分解法.6、A【解析】根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,由a是實數(shù),得|a|≥0恒成立,因此,這一事件是必然事件.故選A.7、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關鍵.8、B【解析】

先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【點睛】本題主要考查了有理數(shù)的混合運算,熟練掌握法則是解答本題的關鍵.有理數(shù)的混合運算,先乘方,再乘除,后加減,有括號的先算括號內(nèi)的.9、B【解析】

從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點睛】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.10、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數(shù)的算術平方根,否則容易出現(xiàn)選A的錯誤.二、填空題(共7小題,每小題3分,滿分21分)11、(-5,4)【解析】試題解析:由于圖形平移過程中,對應點的平移規(guī)律相同,

由點A到點A'可知,點的橫坐標減6,縱坐標加3,

故點B'的坐標為即

故答案為:12、【解析】

根據(jù)新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.13、-1<X<2【解析】經(jīng)過點A,∴不等式x>kx+b>-2的解集為.14、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.15、【解析】E、F分別是BC、AC的中點.,∠CAB=26°又∠CAD=26°!16、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.17、.【解析】

作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉的性質(zhì)可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點睛】本題主要考查扇形的計算公式,正確表示出陰影部分的面積是計算的關鍵.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】

根據(jù)等式的基本性質(zhì)可得,然后利用SAS即可證出,從而證出結論.【詳解】證明:,,即,在和中,,,.【點睛】此題考查的是全等三角形的判定及性質(zhì),掌握利用SAS判定兩個三角形全等和全等三角形的對應邊相等是解決此題的關鍵.19、(1)結果見解析;(2)不公平,理由見解析.【解析】判斷游戲是否公平,即是看雙方取勝的概率是否相同,若相同,則公平,不相同則不公平.20、(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥2【解析】

(1)根據(jù)勾股定理,可得AB的長,根據(jù)圓的面積公式,可得答案;(2)根據(jù)確定圓,可得l與⊙A相切,根據(jù)圓的面積,可得AB的長為3,根據(jù)等腰直角三角形的性質(zhì),可得,可得答案;(3)根據(jù)圓心與直線垂直時圓心到直線的距離最短,根據(jù)確定圓的面積,可得PB的長,再根據(jù)30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標為(?1,0),B的坐標為(3,3),∴AB==5,根據(jù)題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,∴AB⊥CD,∠DCA=45°.,①當b>0時,則點B在第二象限.過點B作BE⊥x軸于點E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②當b<0時,則點B'在第四象限.同理可得.綜上所述,點B的坐標為或.(3)如圖2,,直線當y=0時,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直線的距離最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),當m≤-5或m≥2時,PD的距離大于或等于4,點A,B的“確定圓”的面積都不小于9π.點A,B的“確定圓”的面積都不小于9π,m的范圍是m≤-5或m≥2.【點睛】本題考查了一次函數(shù)綜合題,解(1)的關鍵是利用勾股定理得出AB的長;解(2)的關鍵是等腰直角三角形的性質(zhì)得出;解(3)的關鍵是利用30°的直角邊等于斜邊的一半得出PC=2PB.21、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點:解直角三角形的應用,坡度.22、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論