2024屆山西省大同市云岡區(qū)重點名校中考數(shù)學全真模擬試題含解析_第1頁
2024屆山西省大同市云岡區(qū)重點名校中考數(shù)學全真模擬試題含解析_第2頁
2024屆山西省大同市云岡區(qū)重點名校中考數(shù)學全真模擬試題含解析_第3頁
2024屆山西省大同市云岡區(qū)重點名校中考數(shù)學全真模擬試題含解析_第4頁
2024屆山西省大同市云岡區(qū)重點名校中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省大同市云岡區(qū)重點名校中考數(shù)學全真模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+2.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣33.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.4.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<105.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.6.△ABC在正方形網(wǎng)格中的位置如圖所示,則cosB的值為()A. B. C. D.27.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數(shù)和是()A.60° B.45° C.35° D.30°8.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.9.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×10610.下列圖形中,不是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.點(a-1,y1)、(a+1,y2)在反比例函數(shù)y=(k>0)的圖象上,若y1<y2,則a的范圍是________.12.如圖,已知的半徑為2,內接于,,則__________.13.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認為正確的都填上).14.a、b、c是實數(shù),點A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關系是b____c(用“>”或“<”號填空)15.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點,與雙曲線y=(x>0)交于第一象限點C,若BC=2AB,則S△AOB=________.16.我國古代有這樣一道數(shù)學問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是尺.

三、解答題(共8題,共72分)17.(8分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和1.B布袋中有三個完全相同的小球,分別標有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;(1)求點Q落在直線y=﹣x﹣1上的概率.18.(8分)4月23日是世界讀書日,總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣?!蹦承m憫栒?,鼓勵師生利用課余時間廣泛閱讀,該校文學社為了解學生課外閱讀的情況,抽樣調查了部分學生每周用于課外閱讀的時間,過程如下:收集數(shù)據(jù)從學校隨機抽取20名學生,進行了每周用于課外閱讀時間的調查,數(shù)據(jù)如下(單位:min):30608150401101301469010060811201407081102010081整理數(shù)據(jù)按如下分段整理樣本數(shù)據(jù)并補全表格:課外閱讀時間(min)等級DCBA人數(shù)38分析數(shù)據(jù)補全下列表格中的統(tǒng)計量:平均數(shù)中位數(shù)眾數(shù)80得出結論(1)用樣本中的統(tǒng)計量估計該校學生每周用于課外閱讀時間的情況等級為;(2)如果該?,F(xiàn)有學生400人,估計等級為“”的學生有多少名?(3)假設平均閱讀一本課外書的時間為160分鐘,請你選擇一種統(tǒng)計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?19.(8分)△ABC內接于⊙O,AC為⊙O的直徑,∠A=60°,點D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長EO交⊙O于點G,在OG上取點F,使OF=2OE,延長BD到點M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長.20.(8分)已知動點P以每秒2

cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6

cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?21.(8分)在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術,書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?22.(10分)先化簡,再求值:(1﹣)÷,其中x是不等式組的整數(shù)解23.(12分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.24.觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現(xiàn)如今已對釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結果精確到0.01,≈2.449)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

過點C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.2、A【解析】

用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數(shù)加法的運算,解題的關鍵是要熟練掌握:“先符號,后絕對值”.3、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.4、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關鍵.5、C【解析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖6、A【解析】

解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.7、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.8、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.9、B【解析】.故選B.點睛:在把一個絕對值較大的數(shù)用科學記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).10、A【解析】

觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣1<a<1【解析】

解:∵k>0,∴在圖象的每一支上,y隨x的增大而減小,①當點(a-1,y1)、(a+1,y2)在圖象的同一支上,∵y1<y2,∴a-1>a+1,解得:無解;②當點(a-1,y1)、(a+1,y2)在圖象的兩支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案為:-1<a<1.【點睛】本題考查反比例函數(shù)的性質.12、【解析】分析:根據(jù)圓內接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點睛:本題考查三角形的外接圓和外心,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.13、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD?!摺鰽EF是等邊三角形,∴AE=AF?!咴赗t△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)?!郆E=DF?!連C=DC,∴BC﹣BE=CD﹣DF?!郈E=CF?!啖僬f法正確?!逤E=CF,∴△ECF是等腰直角三角形?!唷螩EF=45°。∵∠AEF=60°,∴∠AEB=75°?!啖谡f法正確。如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF?!摺螩AD≠∠DAF,∴DF≠FG?!郆E+DF≠EF?!啖壅f法錯誤?!逧F=2,∴CE=CF=。設正方形的邊長為a,在Rt△ADF中,,解得,∴?!??!啖苷f法正確。綜上所述,正確的序號是①②④。14、<【解析】試題分析:將二次函數(shù)y=x2-2ax+3轉換成y=(x-a)2-a2+3,則它的對稱軸是x=a,拋物線開口向上,所以在對稱軸右邊y隨著x的增大而增大,點A點B均在對稱軸右邊且a+1<a+2,所以b<c.15、【解析】

根據(jù)題意可設出點C的坐標,從而得到OA和OB的長,進而得到△AOB的面積即可.【詳解】∵直接y=kx+b與x軸、y軸交A、B兩點,與雙曲線y=交于第一象限點C,若BC=2AB,設點C的坐標為(c,)∴OA=0.5c,OB==,∴S△AOB===【點睛】此題主要考查反比例函數(shù)的圖像,解題的關鍵是根據(jù)題意設出C點坐標進行求解.16、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內的問題解決,展開后可轉化下圖,所以是直角三角形求斜邊的問題,根據(jù)勾股定理可求出葛藤長為=1(尺).故答案為1.考點:平面展開最短路徑問題三、解答題(共8題,共72分)17、(1)見解析;(1)【解析】試題分析:先用列表法寫出點Q的所有可能坐標,再根據(jù)概率公式求解即可.(1)由題意得

1

1

-1

(1,-1)

(1,-1)

-1

(1,-1)

(1,-1)

-2

(1,-2)

(1,-2)

(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=?x?1上)=.考點:概率公式點評:解題的關鍵是熟練掌握概率公式:概率=所求情況數(shù)與總情況數(shù)的比值.18、(1)填表見解析;(2)160名;(3)平均數(shù);26本.【解析】【分析】先確定統(tǒng)計表中的C、A等級的人數(shù),再根據(jù)中位數(shù)和眾數(shù)的定義得到樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(1)根據(jù)統(tǒng)計量,結合統(tǒng)計表進行估計即可;(2)用“B”等級人數(shù)所占的比例乘以全校的學生數(shù)即可得;(3)選擇平均數(shù),計算出全年閱讀時間,然后再除以閱讀一本課外書的時間即可得.【詳解】整理數(shù)據(jù)按如下分段整理樣本數(shù)據(jù)并補全表格:課外閱讀時間(min)等級DCBA人數(shù)3584分析數(shù)據(jù)補全下列表格中的統(tǒng)計量:平均數(shù)中位數(shù)眾數(shù)808181得出結論(1)觀察統(tǒng)計量表格可以估計該校學生每周用于課外閱讀時間的情況等級B,故答案為:B;(2)8÷20×400=160∴該校等級為“”的學生有160名;(3)選統(tǒng)計量:平均數(shù)80×52÷160=26,∴該校學生每人一年平均閱讀26本課外書.【點睛】本題考查了中位數(shù)、眾數(shù)、平均數(shù)、統(tǒng)計表、用樣本估計總體等知識,熟練掌握各統(tǒng)計量的求解方法是關鍵.19、(1)證明見解析;(2)證明見解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結合特殊角度和已知的線段長度求出CE的長度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過點M作AB的平行線交AC于點Q,過點D作DN垂直EG于點N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見解析;(2)證明見解析;(3)CE=.【點睛】本題考查圓的相關性質以及與圓有關的計算,全等三角形的性質和判定,第三問構造全等三角形找到與∠BMF相等的角為解題的關鍵.20、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】

(1)根據(jù)題意得:動點P在BC上運動的時間是4秒,又由動點的速度,可得BC的長;(2)由(1)可得BC的長,又由AB=6cm,可以計算出△ABP的面積,計算可得a的值;(3)分析圖形可得,甲中的圖形面積等于AB×AF-CD×DE,根據(jù)圖象求出CD和DE的長,代入數(shù)據(jù)計算可得答案,(4)計算BC+CD+DE+EF+FA的長度,又由P的速度,計算可得b的值.【詳解】(1)由圖象知,當t由0增大到4時,點P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由圖象知CD=4㎝,DE=6㎝,則EF=2㎝,AF=14㎝∴圖1中的圖象面積為6×14-4×6=60㎝2;(4)圖1中的多邊形的周長為(14+6)×2=40㎝b=(40-6)÷2=17秒.21、(1)詳見解析;(2)40%;(3)105;(4).【解析】

(1)先求出參加活動的女生人數(shù),進而求出參加武術的女生人數(shù),即可補全條形統(tǒng)計圖,再分別求出參加武術的人數(shù)和參加器樂的人數(shù),即可求出百分比;(2)用參加剪紙中男生人數(shù)除以剪紙的總人數(shù)即可得出結論;(3)根據(jù)樣本估計總體的方法計算即可;(4)利用概率公式即可得出結論.【詳解】(1)由條形圖知,男生共有:10+20+13+9=52人,∴女生人數(shù)為100-52=48人,∴參加武術的女生為48-15-8-15=10人,∴參加武術的人數(shù)為20+10=30人,∴30÷100=30%,參加器樂的人數(shù)為9+15=24人,∴24÷100=24%,補全條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示:(2)在參加“剪紙”活動項目的學生中,男生所占的百分比是100%=40%.答:在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論