棗莊市重點中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第1頁
棗莊市重點中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第2頁
棗莊市重點中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第3頁
棗莊市重點中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第4頁
棗莊市重點中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

棗莊市重點中學(xué)2024年八年級數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下面四個圖形分別是節(jié)能、節(jié)水、低碳和綠色食品標志,在這四個標志中,是軸對稱圖形的是()A. B. C. D.2.如圖,在正方形OABC中,點A的坐標是(﹣3,1),點B的縱坐標是4,則B,C兩點的坐標分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)3.已知代數(shù)式-m2+4m-4,無論m取任何值,它的值一定是()A.正數(shù) B.負數(shù) C.非正數(shù) D.非負數(shù)4.如圖所示的四邊形,與選項中的四邊形一定相似的是()A. B.C. D.5.已知反比例函數(shù),下列結(jié)論中不正確的是()A.圖象經(jīng)過點(-1,-1) B.圖象在第一、三象限C.當時, D.當時,y隨著x的增大而增大6.下而給出四邊形ABCD中的度數(shù)之比,其中能判定四邊形ABCD為平行四邊形的是().A.1:2:3:4 B.1:2:2:3 C.2:2:3:3 D.2:3:2:37.如圖,已知函數(shù)y1=3x+b和y2=ax﹣3的圖象交于點P(﹣2,﹣5),則不等式3x+b>ax﹣3的解集為()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣58.如圖,E是平行四邊形內(nèi)任一點,若S平行四邊形ABCD=8,則圖中陰影部分的面積是()A.3 B.4 C.5 D.69.關(guān)于一次函數(shù),下列結(jié)論正確的是()A.圖象過點 B.圖象與軸的交點是C.隨的增大而增大 D.函數(shù)圖象不經(jīng)過第三象限10.如圖,在中,是邊上的一點,射線和的延長線交于點,如果,那么的值是()A. B. C. D.二、填空題(每小題3分,共24分)11.當a=______時,的值為零.12.《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架,書中的算法體系至今仍在推動著計算機的發(fā)展和應(yīng)用.《九章算術(shù)》中記載:今有戶不知高、廣,竿不知長、短.橫之不出四尺,從之不出二尺,邪之適出.問戶高、廣、邪各幾何?譯文是:今有門不知其高、寬,有竿,不知其長、短,橫放,竿比門寬長出尺;豎放,竿比門高長出尺;斜放,竿與門對角線恰好相等.問門高、寬、對角線長分別是多少?若設(shè)門對角線長為尺,則可列方程為__________.13.如圖,△ACE是以ABCD的對角線AC為邊的等邊三角形,點C與點E關(guān)于x軸對稱.若E點的坐標是(7,),則D點的坐標是_____.14.一元二次方程的兩根為,,若,則______.15.如果有意義,那么x的取值范圍是_____.16.如圖,正方形和正方形的邊長分別為3和1,點、分別在邊、上,為的中點,連接,則的長為_________.17.如圖,在正方形ABCD中,點E,H,F(xiàn),G分別在邊AB,BC,CD,DA上,EF,GH交于點O,∠FOH=90°,EF=1.則GH的長為__________.18.點P(m-1,2m+3)關(guān)于y軸對稱的點在第一象限,則m的取值范圍是_______.三、解答題(共66分)19.(10分)如圖:在ΔABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點E,DF⊥AC于點F.(1)求證:AB=AC;(2)若DC=4,∠DAC=30°,求AD20.(6分)在平面直角坐標系中,已知點A(﹣4,2),B(﹣4,0),C(﹣1,1),請在圖上畫出△ABC,并畫出與△ABC關(guān)于原點O對稱的圖形.21.(6分)甲、乙兩車間同時開始加工一批服裝.從幵始加工到加工完這批服裝甲車間工作了9小時,乙車間在中途停工一段時間維修設(shè)備,然后按停工前的工作效率繼續(xù)加工,直到與甲車間同時完成這批服裝的加工任務(wù)為止.設(shè)甲、乙兩車間各自加工服裝的數(shù)量為y(件).甲車間加工的時間為x(時),y與x之間的函數(shù)圖象如圖所示.(1)甲車間每小時加工服裝件數(shù)為件;這批服裝的總件數(shù)為件.(2)求乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;(3)求甲、乙兩車間共同加工完1000件服裝時甲車間所用的時間.22.(8分)一次安全知識測驗中,學(xué)生得分均為整數(shù),滿分10分,這次測驗中,甲,乙兩組學(xué)生人數(shù)都為5人,成績?nèi)缦拢▎挝唬悍郑杭祝?,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數(shù)眾數(shù)中位數(shù)甲______________88乙______________9______________(2)已知甲組學(xué)生成績的方差,計算乙組學(xué)生成績的方差,并說明哪組學(xué)生的成績更穩(wěn)定.23.(8分)把直線向上平移m個單位后,與直線的交點為點P.(1)求點P坐標用含m的代數(shù)式表示(2)若點P在第一象限,求m的取值范圍.24.(8分)如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.(1)在圖1中,畫一個三角形,使它的三邊長都是有理數(shù);(2)在圖2中,畫一個直角三角形,使它們的直角邊都是無理數(shù);(3)在圖3中,畫一個正方形,使它的面積是1.25.(10分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠ABC=60°,EF⊥AB,垂足為F,連接DF.(1)證明:△ACB≌△EFB;(2)求證:四邊形ADFE是平行四邊形.26.(10分)菱形ABCD在平面直角坐標系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:(1)求點D的坐標;(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,則k=;(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

結(jié)合軸對稱圖形的概念進行求解即可.【詳解】解:根據(jù)軸對稱圖形的概念可知:A、不是軸對稱圖形,故本選項錯誤;B、是軸對稱圖形,故本選項錯誤;C、不是軸對稱圖形,故本選項錯誤;D、不是軸對稱圖形,故本選項正確.故選B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、A【解析】

作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.3、C【解析】

直接利用完全平方公式分解因式進而利用偶次方的性質(zhì)分析得出即可.【詳解】∵-m2+4m-4=-(m2-4m+4)=-(m-2)2,(m-2)2≥0,∴-(m-2)2≤0,故選C.【點睛】此題主要考查了公式法分解因式,熟練應(yīng)用乘法公式是解題關(guān)鍵.4、D【解析】

根據(jù)勾股定理求出四邊形ABCD的四條邊之比,根據(jù)相似多邊形的判定方法判斷即可.【詳解】作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應(yīng)角相等,故選:D.【點睛】此題考查相似多邊形的判定定理,兩個多邊形的對應(yīng)角相等,對應(yīng)邊成比例,則這兩個多邊形相似,此題求出多邊形的剩余邊長是解題的關(guān)鍵,利用矩形的性質(zhì)定理,勾股定理求出邊長.5、D【解析】

根據(jù)反比例函數(shù)的性質(zhì),利用排除法求解.【詳解】解:A、x=-1,y==-1,∴圖象經(jīng)過點(-1,-1),正確;B、∵k=1>0,∴圖象在第一、三象限,正確;C、∵k=1>0,∴圖象在第一象限內(nèi)y隨x的增大而減小,∴當x>1時,0<y<1,正確;D、應(yīng)為當x<0時,y隨著x的增大而減小,錯誤.故選:D.【點睛】本題考查了反比例函數(shù)的性質(zhì),當k>0時,函數(shù)圖象在第一、三象限,在每個象限內(nèi),y的值隨x的值的增大而減?。?、D【解析】

由于平行四邊形的兩組對角分別相等,故只有D能判定是平行四邊形.其它三個選項不能滿足兩組對角相等,故不能判定.【詳解】解:根據(jù)平行四邊形的兩組對角分別相等,可知D正確.

故選:D.【點睛】本題考查了平行四邊形的判定,運用了兩組對角分別相等的四邊形是平行四邊形這一判定方法.7、A【解析】

函數(shù)y1=3x+b和y1=ax﹣3的圖象交于點P(﹣1,﹣5),求不等式3x+b>ax﹣3的解集,就是看函數(shù)在什么范圍內(nèi)y1=3x+b的圖像在函數(shù)y1=ax﹣3的圖象上面,據(jù)此進一步求解即可.【詳解】從圖像得到,當x>﹣1時,y1=3x+b的圖像對應(yīng)的點在函數(shù)y1=ax﹣3的圖像上面,∴不等式3x+b>ax﹣3的解集為:x>﹣1.故選:A.【點睛】本題主要考查了一次函數(shù)與不等式的綜合運用,熟練掌握相關(guān)方法是解題關(guān)鍵.8、B【解析】

解:設(shè)兩個陰影部分三角形的底為AD,CB,高分別為h1,h2,則h1+h2為平行四邊形的高,∴=4故選:B【點睛】本題主要考查了三角形的面積公式和平行四邊形的性質(zhì)(平行四邊形的兩組對邊分別相等).要求能靈活的運用等量代換找到需要的關(guān)系.9、D【解析】

A、把點的坐標代入關(guān)系式,檢驗是否成立;B、把y=0代入解析式求出x,判斷即可;C、根據(jù)一次項系數(shù)判斷;D、根據(jù)系數(shù)和圖象之間的關(guān)系判斷.【詳解】解:A、當x=1時,y=1.所以圖象不過(1,?1),故錯誤;B、把y=0代入y=?2x+3,得x=,所以圖象與x軸的交點是(,0),故錯誤;C、∵?2<0,∴y隨x的增大而減小,故錯誤;D、∵?2<0,3>0,∴圖象過一、二、四象限,不經(jīng)過第三象限,故正確.故選:D.【點睛】本題主要考查了一次函數(shù)的圖象和性質(zhì).常采用數(shù)形結(jié)合的思想求解.10、A【解析】

由平行四邊形的性質(zhì)可得AD∥BC,AB∥CD,從而可得△EAF∽△EBC,△EAF∽△CFD,由,可得,繼而可得,即可求得=.【詳解】:∵四邊形ABCD是平行四邊形,∴AD∥BC,AB∥CD,∴△EAF∽△EBC,△EAF∽△CFD,∵,∴,∴,∴=,故選A.【點睛】本題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì),熟練掌握相似三角形的面積比等于相似比的平方、周長比等于相似比是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、﹣1.【解析】

根據(jù)分式的值為零的條件列式計算即可.【詳解】由題意得:a2﹣1=2,a﹣1≠2,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子為2;②分母不為2.這兩個條件缺一不可.12、.【解析】

根據(jù)題中所給的條件可知,竿斜放就恰好等于門的對角線長,可與門的寬和高構(gòu)成直角三角形,運用勾股定理可求出門高、寬、對角線長.【詳解】解:根據(jù)勾股定理可得:

,即x2-8x+16+x2-4x+4=x2,

解得:x1=2(不合題意舍去),x2=10,

10-2=8(尺),

10-4=6(尺).

答:門高8尺,門寬6尺,對角線長10尺.

故答案為:.【點睛】本題考查勾股定理的運用,正確運用勾股定理,將數(shù)學(xué)思想運用到實際問題中是解題的關(guān)鍵.13、(3,0)【解析】

∵點C與點E關(guān)于x軸對稱,E點的坐標是(7,),∴C的坐標為(7,).∴CH=,CE=,∵△ACE是以ABCD的對角線AC為邊的等邊三角形,∴AC=.∴AH=1.∵OH=7,∴AO=DH=2.∴OD=3.∴D點的坐標是(3,0).14、-7【解析】

先用根與系數(shù)的關(guān)系,確定m、n的和與積,進一步確定a的值,然后將m代入,得到,最后再對變形即會完成解答.【詳解】解:由得:m+n=-5,mn=a,即a=2又m是方程的根,則有,所以+(m+n)=-2-5=-7故答案為-7.【點睛】本題主要考查了一元二次方程的解和多項式的變形,其中根據(jù)需要對多項式進行變形是解答本題的關(guān)鍵.15、x>1【解析】

根據(jù)二次根式有意義的條件可得>1,再根據(jù)分式分母≠1可得x>1.【詳解】由題意得:x>1,故答案為:x>1【點睛】此題考查二次根式有意義的條件,掌握其定義是解題關(guān)鍵16、【解析】

延長GE交AB于點O,作PH⊥OE于點H,則PH是△OAE的中位線,求得PH的長和HG的長,在Rt△PGH中利用勾股定理求解.【詳解】解:延長GE交AB于點O,作PH⊥OE于點H.

則PH∥AB.

∵P是AE的中點,

∴PH是△AOE的中位線,

∴PH=OA=×(3-1)=1.

∵直角△AOE中,∠OAE=45°,

∴△AOE是等腰直角三角形,即OA=OE=2,

同理△PHE中,HE=PH=1.

∴HG=HE+EG=1+1=2.

∴在Rt△PHG中,PG=故答案是:.【點睛】本題考查了正方形的性質(zhì)、勾股定理和三角形的中位線定理,正確作出輔助線構(gòu)造直角三角形是關(guān)鍵.17、1【解析】

如圖,過點F作于M,過點G作于N,設(shè)GN、EF交點為P,根據(jù)正方形的性質(zhì)可得,再根據(jù)同角的余角相等可得,然后利用“角邊角”證明,根據(jù)全等三角形對應(yīng)邊相等可得,然后代入數(shù)據(jù)即可得解.【詳解】如圖,過點F作于M,過點G作于N,設(shè)GN、EF交點為P∵四邊形ABCD是正方形∴∴∵∴∴在△EFM和△HGN中∴∴∵∴即GH的長為1故答案為:1.【點睛】本題考查了矩形的線段長問題,掌握正方形的性質(zhì)、全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.18、-1.5<m<1【解析】

首先根據(jù)題意判斷出P點在第二象限,再根據(jù)第二象限內(nèi)點的坐標符號(-,+),可得到不等式組,然后求解不等式組即可得出m的取值范圍.【詳解】解:∵P(m-1,2m+3)關(guān)于y軸對稱的點在第一象限,

∴P點在第二象限,

解得:-1.5<m<1,

故答案為:-1.5<m<1.【點睛】本題考查關(guān)于y軸對稱的點的坐標特點,各象限內(nèi)點的坐標符號,解一元一次不等式組.解答本題的關(guān)鍵是判斷出P點所在象限并據(jù)此列出不等式組.三、解答題(共66分)19、(1)證明見解析;(2)4【解析】

(1)根據(jù)角平分線的性質(zhì)得到DE=DF,證明Rt△BDE≌Rt△CDF,根據(jù)全等三角形的性質(zhì)得到∠B=∠C,根據(jù)等腰三角形的判定定理證明;(2)根據(jù)直角三角形的性質(zhì)求出AC,根據(jù)勾股定理計算即可.【詳解】(1)證明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,DE=DFBD=CD∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD=AC【點睛】本題考查的是全等三角形的判定和性質(zhì)、角平分線的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.20、見解析【解析】

根據(jù)坐標分別在坐標系中描出各點,再順次連接各點組成的圖形即為所求;根據(jù)中心對稱的特點,找到對應(yīng)點坐標,再連線即可【詳解】如圖所示:△A′B′C′與△ABC關(guān)于原點O對稱.【點睛】此題主要考查了作關(guān)于原點成中心對稱的圖形,得出對應(yīng)點的位置是解題關(guān)鍵.21、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.【解析】試題分析:(1)根據(jù)工作效率=工作總量÷工作時間,即可求出甲車間每小時加工服裝件數(shù),再根據(jù)這批服裝的總件數(shù)=甲車間加工的件數(shù)+乙車間加工的件數(shù),即可求出這批服裝的總件數(shù);(2)根據(jù)工作效率=工作總量÷工作時間,即可求出乙車間每小時加工服裝件數(shù),根據(jù)工作時間=工作總量÷工作效率結(jié)合工作結(jié)束時間,即可求出乙車間修好設(shè)備時間,再根據(jù)加工的服裝總件數(shù)=120+工作效率×工作時間,即可求出乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;(3)根據(jù)加工的服裝總件數(shù)=工作效率×工作時間,求出甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式,將甲、乙兩關(guān)系式相加令其等于1000,求出x值,此題得解.試題解析:解:(1)甲車間每小時加工服裝件數(shù)為720÷9=10(件),這批服裝的總件數(shù)為720+420=2(件).故答案為10;2.(2)乙車間每小時加工服裝件數(shù)為120÷2=60(件),乙車間修好設(shè)備的時間為9﹣(420﹣120)÷60=4(時),∴乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式為y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式為y=10x,當10x+60x﹣120=1000時,x=1.答:甲、乙兩車間共同加工完1000件服裝時甲車間所用的時間為1小時.點睛:本題考查了一次函數(shù)的應(yīng)用以及解一元一次方程,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系,列式計算;(2)根據(jù)數(shù)量關(guān)系,找出乙車間維修設(shè)備后,乙車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式;(3)根據(jù)數(shù)量關(guān)系,找出甲車間加工服裝數(shù)量y與x之間的函數(shù)關(guān)系式.22、(1)甲:平均數(shù)8;乙:平均數(shù)8,中位數(shù)9;(2)甲組學(xué)生的成績比較穩(wěn)定.【解析】

(1)根據(jù)平均數(shù)和中位數(shù)的定義求解可得;(2)根據(jù)方差的定義計算出乙的方差,再比較即可得.【詳解】(1)甲的平均數(shù):,乙的平均數(shù):,乙的中位數(shù):9;(2).∵,∴甲組學(xué)生的成績比較穩(wěn)定.【點睛】本題考查了求平均數(shù),中位數(shù)與方差,方差反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.23、(1);(2)m>1.【解析】

根據(jù)“上加下減”的平移規(guī)律求出直線向上平移m個單位后的解析式,再與直線聯(lián)立,得到方程組,求出方程組的解即可得到交點P的坐標;根據(jù)第一象限內(nèi)點的坐標特征列出不等式組,求解即可得出m的取值范圍.【詳解】解:直線向上平移m個單位后可得:,聯(lián)立兩直線解析式得:,解得:,即交點P的坐標為;點P在第一象限,,解得:.【點睛】考查了一次函數(shù)圖象與幾何變換、兩直線的交點坐標,注意第一象限的點的橫坐標大于1、縱坐標大于1.24、(1)見解析(2)見解析(3)見解析【解析】

(1)根據(jù)題意可畫出三邊長分別為3,4,5的三角形即可;(2)根據(jù)題意及勾股定理即可畫出邊長為、、的直角三角形;(3)根據(jù)題意及正方形面積的特點即可畫出邊長為的正方形.【詳解】(1)如圖1,三角形為所求;(2)如圖2,三角形為所求;(3)如圖3,正方形為所求.

【點睛】此題主要考查網(wǎng)格與圖形,解題的關(guān)鍵是熟知勾股定理的運用.25、(1)見詳解;(2)見詳解.【解析】

(1)由△ABE是等邊三角形可知:AB=BE,∠EBF=60°,于是可得到∠EFB=∠ACB=90°,∠EBF=∠ABC,接下來依據(jù)AAS證明△ABC≌△EBF即可;(2)由△ABC≌△EBF可得到EF=AC,由△ACD是的等邊三角形進而可證明AC=AD=EF,然后再證明∠BAD=90°,可證明EF∥AD,故此可得到四邊形EFDA為平行四邊形.【詳解】解:(1)證明:∵△ABE是等邊三角形,EF⊥AB,∴∠EBF=60°,AE=BE,∠EFB=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EFB=∠ACB,∠EBF=∠ABC.∵BE=BA,∴△ABC≌△EBF(AAS).(2)證明:∵△ABC≌△EBF,∴EF=AC.∵△ACD是的等邊三角形,∴AC=AD=EF,∠CAD=60°,又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EFA=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四邊形EFDA是平行四邊形.【點睛】本題主要考查了平行四邊形的判定、全等三角形的性質(zhì)和判定、等邊三角形的性質(zhì),解題的關(guān)鍵是掌握證明全等三角形的判定方法和證明平行四邊形的判定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論