版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆天津一中學中考一模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.102.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm3.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm4.已知:二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,下列結論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個5.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個6.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>37.已知拋物線的圖像與軸交于、兩點(點在點的右側),與軸交于點.給出下列結論:①當?shù)臈l件下,無論取何值,點是一個定點;②當?shù)臈l件下,無論取何值,拋物線的對稱軸一定位于軸的左側;③的最小值不大于;④若,則.其中正確的結論有()個.A.1個 B.2個 C.3個 D.4個8.如圖1,將三角板的直角頂點放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°9.一個圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.410.關于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-4二、填空題(共7小題,每小題3分,滿分21分)11.已知二次函數(shù)y=x2,當x>0時,y隨x的增大而_____(填“增大”或“減小”).12.如圖,已知圓柱底面周長為6cm,圓柱高為2cm,在圓柱的側面上,過點A和點C嵌有一圈金屬絲,則這圈金屬絲的周長最小為_____cm.13.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.14.如圖是一位同學設計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=15米,那么該古城墻的高度CD是_____米.15.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,B′和B分別對應),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點A′,B,則的值為_________.16.如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為________.17.因式分解:9a2﹣12a+4=______.三、解答題(共7小題,滿分69分)18.(10分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?19.(5分)“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.求與之間的函數(shù)關系式;如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.20.(8分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數(shù)量關系.②猜測線段AF,BF與CE的數(shù)量關系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.21.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.22.(10分)隨著移動計算技術和無線網(wǎng)絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:本次接受隨機抽樣調(diào)查的學生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).23.(12分)2018年“清明節(jié)”前夕,宜賓某花店用1000元購進若干菊花,很快售完,接著又用2500元購進第二批花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進價比第一批的進價多元.(1)第一批花每束的進價是多少元.(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?24.(14分)我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有______人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為______°.(2)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.2、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質3、D【解析】【分析】先求AC,再根據(jù)點D是線段AC的中點,求出CD,再求BD.【詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點睛】本題考核知識點:線段的中點,和差.解題關鍵點:利用線段的中點求出線段長度.4、B【解析】
根據(jù)二次函數(shù)的圖象與性質判斷即可.【詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【點睛】本題二次函數(shù)的圖象與性質,牢記公式和數(shù)形結合是解題的關鍵.5、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點的橫坐標分別為(﹣1,0)、(1,0),所以當y<0時,x的取值范圍正好在兩交點之間,即﹣1<x<1.故選B.考點:二次函數(shù)的圖象.1061447、C【解析】
①利用拋物線兩點式方程進行判斷;
②根據(jù)根的判別式來確定a的取值范圍,然后根據(jù)對稱軸方程進行計算;
③利用頂點坐標公式進行解答;
④利用兩點間的距離公式進行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過點A(1,0).故①正確;
②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個交點,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴該拋物線的對稱軸為:x=,無法判定的正負.
故②不一定正確;
③根據(jù)拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;
④∵A(1,0),B(-,0),C(0,-1),
∴當AB=AC時,,解得:a=,故④正確.
綜上所述,正確的結論有3個.
故選C.【點睛】考查了二次函數(shù)與x軸的交點及其性質.(1).拋物線是軸對稱圖形.對稱軸為直線x=-,對稱軸與拋物線唯一的交點為拋物線的頂點P;特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0);(1).拋物線有一個頂點P,坐標為P(-b/1a,(4ac-b1)/4a),當-=0,〔即b=0〕時,P在y軸上;當Δ=b1-4ac=0時,P在x軸上;(3).二次項系數(shù)a決定拋物線的開口方向和大?。划攁>0時,拋物線開口向上;當a<0時,拋物線開口向下;|a|越大,則拋物線的開口越小.(4).一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置;當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;(5).常數(shù)項c決定拋物線與y軸交點;拋物線與y軸交于(0,c);(6).拋物線與x軸交點個數(shù)Δ=b1-4ac>0時,拋物線與x軸有1個交點;Δ=b1-4ac=0時,拋物線與x軸有1個交點;Δ=b1-4ac<0時,拋物線與x軸沒有交點.X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個式子除以1a);當a>0時,函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).8、D【解析】試題分析:根據(jù)平行線的性質,得∠4=∠2=50°,再根據(jù)三角形的外角的性質∠3=∠4-∠1=50°-30°=20°.故答案選D.考點:平行線的性質;三角形的外角的性質.9、B【解析】
圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關鍵是利用知識點:圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對角線長為圓的直徑解答.10、C【解析】
對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式二、填空題(共7小題,每小題3分,滿分21分)11、增大.【解析】
根據(jù)二次函數(shù)的增減性可求得答案【詳解】∵二次函數(shù)y=x2的對稱軸是y軸,開口方向向上,∴當y隨x的增大而增大.故答案為:增大.【點睛】本題考查的知識點是二次函數(shù)的性質,解題的關鍵是熟練的掌握二次函數(shù)的性質.12、2【解析】
要求絲線的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.∵圓柱底面的周長為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長最小為2AC=2cm.故答案為2.【點睛】本題考查了平面展開?最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題就是把圓柱的側面展開成矩形,“化曲面為平面”,用勾股定理解決.13、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.14、10【解析】
首先證明△ABP∽△CDP,可得=,再代入相應數(shù)據(jù)可得答案.【詳解】如圖,由題意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案為10.【點睛】本題考查了相似三角形的應用,解題的關鍵是熟練的掌握相似三角形的應用.15、【解析】
解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征;矩形的性質,利用數(shù)形結合思想解題是關鍵.16、【解析】
作出D關于AB的對稱點D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據(jù)邊角關系即可求解.【詳解】解:如圖:作出D關于AB的對稱點D’,連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為弧BC的中點,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關鍵.17、(3a﹣1)1【解析】
直接利用完全平方公式分解因式得出答案.【詳解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【點睛】考查了公式法分解因式,正確運用公式是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)L1表示汽車B到甲地的距離與行駛時間的關系;(2)汽車B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小時后,兩車相距30千米;(5)行駛132分鐘,A、B兩車相遇.【解析】試題分析:(1)直接根據(jù)函數(shù)圖象的走向和題意可知L1表示汽車B到甲地的距離與行駛時間的關系;
(2)由L1上60分鐘處點的坐標可知路程和時間,從而求得速度;
(3)先分別設出函數(shù),利用函數(shù)圖象上的已知點,使用待定系數(shù)法可求得函數(shù)解析式;
(4)結合(3)中函數(shù)圖象求得時s的值,做差即可求解;
(5)求出函數(shù)圖象的交點坐標即可求解.試題解析:(1)函數(shù)圖形可知汽車B是由乙地開往甲地,故L1表示汽車B到甲地的距離與行駛時間的關系;(2)(330﹣240)÷60=1.5(千米/分);(3)設L1為把點(0,330),(60,240)代入得所以設L2為把點(60,60)代入得所以(4)當時,330﹣150﹣120=60(千米);所以2小時后,兩車相距60千米;(5)當時,解得即行駛132分鐘,A、B兩車相遇.19、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】
(1)可用待定系數(shù)法來確定y與x之間的函數(shù)關系式;(2)根據(jù)利潤=銷售量×單件的利潤,然后將(1)中的函數(shù)式代入其中,求出利潤和銷售單件之間的關系式,然后根據(jù)其性質來判斷出最大利潤;(3)首先得出w與x的函數(shù)關系式,進而利用所獲利潤等于3600元時,對應x的值,根據(jù)增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數(shù)關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低于3600元.【點睛】此題主要考查了二次函數(shù)的應用、一次函數(shù)的應用和一元二次方程的應用,利用函數(shù)增減性得出最值是解題關鍵,能從實際問題中抽象出二次函數(shù)模型是解答本題的重點和難點.20、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】
(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點睛】本題考查幾何變換綜合題、正方形的判定和性質、全等三角形的判定和性質、平行線分線段成比例定理、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.21、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據(jù)等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.22、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】
(Ⅰ)利用家庭中擁有1臺移動設備的人數(shù)除以其所占百分比即可得調(diào)查的學生人數(shù),將擁有4臺移動設備的人數(shù)除以總人數(shù)即可求得m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權平均數(shù)的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設備的學生人數(shù)所占比例乘以總人數(shù)1500即可求解.【詳解】解:(Ⅰ)本次接受隨機抽樣調(diào)查的學生人數(shù)為:=50(人),∵×100=31%,∴圖①中m的值為31.故答案為50、31;(Ⅱ)∵這組樣本數(shù)據(jù)中,4出現(xiàn)了16次,出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44811-2024物聯(lián)網(wǎng)數(shù)據(jù)質量評價方法
- 2024年度年福建省高校教師資格證之高等教育學題庫檢測試卷B卷附答案
- 2024年度山西省高校教師資格證之高等教育法規(guī)綜合檢測試卷B卷含答案
- 運用邏輯思維
- 2024專業(yè)采購協(xié)議模板
- 2024新水電安裝合作協(xié)議樣本
- 2024年鋼筋工程承包協(xié)議范本
- 2024年勞動協(xié)議固定期限本參考
- 2024年中央空調(diào)系統(tǒng)工程協(xié)議
- 2024年汽車信貸保證協(xié)議模板定制
- 【類文閱讀】25.古人談讀書(試題)五年級語文上冊 部編版(含答案、解析)
- 新疆維吾爾自治區(qū)吐魯番市2023-2024學年九年級上學期期中數(shù)學試題
- 小學信息技術《認識“畫圖”》說課稿
- 魯教版七年級上冊地理知識點匯總
- 新課標-人教版數(shù)學六年級上冊第四單元《比》單元教材解讀
- 全國高中青年數(shù)學教師優(yōu)質課大賽一等獎《函數(shù)的單調(diào)性》課件
- 部編版道德與法治 四年級上冊 單元作業(yè)設計《為父母分擔》
- 核酸的生物合成 完整版
- 第一章-教育及其本質
- 天然氣巡檢記錄表
- 食品進貨臺賬制度范本(3篇)
評論
0/150
提交評論