中考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)講解_第1頁(yè)
中考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)講解_第2頁(yè)
中考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)講解_第3頁(yè)
中考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)講解_第4頁(yè)
中考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)講解_第5頁(yè)
已閱讀5頁(yè),還剩49頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)函數(shù)知識(shí)點(diǎn)講解PAGE中考數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)1.定義:一般地,如果是常數(shù),,那么叫做的二次函數(shù).2.二次函數(shù)的性質(zhì)(1)拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是軸.(2)函數(shù)的圖像與的符號(hào)關(guān)系.①當(dāng)時(shí)拋物線開(kāi)口向上頂點(diǎn)為其最低點(diǎn);②當(dāng)時(shí)拋物線開(kāi)口向下頂點(diǎn)為其最高點(diǎn).(3)頂點(diǎn)是坐標(biāo)原點(diǎn),對(duì)稱軸是軸的拋物線的解析式形式為.3.二次函數(shù)的圖像是對(duì)稱軸平行于(包括重合)軸的拋物線.4.二次函數(shù)用配方法可化成:的形式,其中.5.二次函數(shù)由特殊到一般,可分為以下幾種形式:①;②;③;④;⑤.6.拋物線的三要素:開(kāi)口方向、對(duì)稱軸、頂點(diǎn).①的符號(hào)決定拋物線的開(kāi)口方向:當(dāng)時(shí),開(kāi)口向上;當(dāng)時(shí),開(kāi)口向下;相等,拋物線的開(kāi)口大小、形狀相同.②平行于軸(或重合)的直線記作.特別地,軸記作直線.7.頂點(diǎn)決定拋物線的位置.幾個(gè)不同的二次函數(shù),如果二次項(xiàng)系數(shù)相同,那么拋物線的開(kāi)口方向、開(kāi)口大小完全相同,只是頂點(diǎn)的位置不同.8.求拋物線的頂點(diǎn)、對(duì)稱軸的方法(1)公式法:,∴頂點(diǎn)是,對(duì)稱軸是直線.(2)配方法:運(yùn)用配方的方法,將拋物線的解析式化為的形式,得到頂點(diǎn)為(,),對(duì)稱軸是直線.(3)運(yùn)用拋物線的對(duì)稱性:由于拋物線是以對(duì)稱軸為軸的軸對(duì)稱圖形,所以對(duì)稱軸的連線的垂直平分線是拋物線的對(duì)稱軸,對(duì)稱軸與拋物線的交點(diǎn)是頂點(diǎn).用配方法求得的頂點(diǎn),再用公式法或?qū)ΨQ性進(jìn)行驗(yàn)證,才能做到萬(wàn)無(wú)一失.9.拋物線中,的作用(1)決定開(kāi)口方向及開(kāi)口大小,這與中的完全一樣.(2)和共同決定拋物線對(duì)稱軸的位置.由于拋物線的對(duì)稱軸是直線,故:①時(shí),對(duì)稱軸為軸;②(即、同號(hào))時(shí),對(duì)稱軸在軸左側(cè);③(即、異號(hào))時(shí),對(duì)稱軸在軸右側(cè).(3)的大小決定拋物線與軸交點(diǎn)的位置.當(dāng)時(shí),,∴拋物線與軸有且只有一個(gè)交點(diǎn)(0,):①,拋物線經(jīng)過(guò)原點(diǎn);②,與軸交于正半軸;③,與軸交于負(fù)半軸.以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時(shí),仍成立.如拋物線的對(duì)稱軸在軸右側(cè),則.10.幾種特殊的二次函數(shù)的圖像特征如下:函數(shù)解析式開(kāi)口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)當(dāng)時(shí)開(kāi)口向上當(dāng)時(shí)開(kāi)口向下(軸)(0,0)(軸)(0,)(,0)(,)()11.用待定系數(shù)法求二次函數(shù)的解析式(1)一般式:.已知圖像上三點(diǎn)或三對(duì)、的值,通常選擇一般式.(2)頂點(diǎn)式:.已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式.(3)交點(diǎn)式:已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式:.12.直線與拋物線的交點(diǎn)(1)軸與拋物線得交點(diǎn)為(0,).(2)與軸平行的直線與拋物線有且只有一個(gè)交點(diǎn)(,).(3)拋物線與軸的交點(diǎn)二次函數(shù)的圖像與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)、,是對(duì)應(yīng)一元二次方程的兩個(gè)實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對(duì)應(yīng)的一元二次方程的根的判別式判定:①有兩個(gè)交點(diǎn)拋物線與軸相交;②有一個(gè)交點(diǎn)(頂點(diǎn)在軸上)拋物線與軸相切;③沒(méi)有交點(diǎn)拋物線與軸相離.(4)平行于軸的直線與拋物線的交點(diǎn)同(3)一樣可能有0個(gè)交點(diǎn)、1個(gè)交點(diǎn)、2個(gè)交點(diǎn).當(dāng)有2個(gè)交點(diǎn)時(shí),兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,則橫坐標(biāo)是的兩個(gè)實(shí)數(shù)根.(5)一次函數(shù)的圖像與二次函數(shù)的圖像的交點(diǎn),由方程組的解的數(shù)目來(lái)確定:①方程組有兩組不同的解時(shí)與有兩個(gè)交點(diǎn);②方程組只有一組解時(shí)與只有一個(gè)交點(diǎn);③方程組無(wú)解時(shí)與沒(méi)有交點(diǎn).(6)拋物線與軸兩交點(diǎn)之間的距離:若拋物線與軸兩交點(diǎn)為,由于、是方程的兩個(gè)根,故一次函數(shù)與反比例函數(shù)考點(diǎn)一、平面直角坐標(biāo)系(3分)1、平面直角坐標(biāo)系在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點(diǎn),不屬于任何象限。2、點(diǎn)的坐標(biāo)的概念點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)??键c(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征(3分)1、各象限內(nèi)點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一象限點(diǎn)P(x,y)在第二象限點(diǎn)P(x,y)在第三象限點(diǎn)P(x,y)在第四象限2、坐標(biāo)軸上的點(diǎn)的特征點(diǎn)P(x,y)在x軸上,x為任意實(shí)數(shù)點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù)點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)3、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征點(diǎn)P(x,y)在第一、三象限夾角平分線上x與y相等點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)4、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。5、關(guān)于x軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù)6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:(1)點(diǎn)P(x,y)到x軸的距離等于(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于考點(diǎn)三、函數(shù)及其相關(guān)概念(3~8分)1、變量與常量在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。2、函數(shù)解析式用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)(1)解析法兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。(2)列表法把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。(3)圖像法用圖像表示函數(shù)關(guān)系的方法叫做圖像法。4、由函數(shù)解析式畫其圖像的一般步驟(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。考點(diǎn)四、正比例函數(shù)和一次函數(shù)(3~10分)1、正比例函數(shù)和一次函數(shù)的概念一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。特別地,當(dāng)一次函數(shù)中的b為0時(shí),(k為常數(shù),k0)。這時(shí),y叫做x的正比例函數(shù)。2、一次函數(shù)的圖像所有一次函數(shù)的圖像都是一條直線3、一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過(guò)原點(diǎn)(0,0)的直線。k的符號(hào)b的符號(hào)函數(shù)圖像圖像特征k>0b>0yx0圖像經(jīng)過(guò)一、二、三象限,y隨x的增大而增大。b<0y0x圖像經(jīng)過(guò)一、三、四象限,y隨x的增大而增大。K<0b>0y0x圖像經(jīng)過(guò)一、二、四象限,y隨x的增大而減小b<0YX0圖像經(jīng)過(guò)二、三、四象限,y隨x的增大而減小。注:當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。4、正比例函數(shù)的性質(zhì),,一般地,正比例函數(shù)有下列性質(zhì):(1)當(dāng)k>0時(shí),圖像經(jīng)過(guò)第一、三象限,y隨x的增大而增大;(2)當(dāng)k<0時(shí),圖像經(jīng)過(guò)第二、四象限,y隨x的增大而減小。5、一次函數(shù)的性質(zhì),,一般地,一次函數(shù)有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小6、正比例函數(shù)和一次函數(shù)解析式的確定確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問(wèn)題的一般方法是待定系數(shù)法??键c(diǎn)五、反比例函數(shù)(3~10分)1、反比例函數(shù)的概念一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。2、反比例函數(shù)的圖像反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒(méi)有交點(diǎn),即雙曲線的兩個(gè)分支無(wú)限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。3、反比例函數(shù)的性質(zhì)反比例函數(shù)k的符號(hào)k>0k<0圖像yOxyOx性質(zhì)①x的取值范圍是x0,y的取值范圍是y0;②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限。在每個(gè)象限內(nèi),y隨x的增大而減小。①x的取值范圍是x0,y的取值范圍是y0;②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別在第二、四象限。在每個(gè)象限內(nèi),y隨x的增大而增大。4、反比例函數(shù)解析式的確定確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。5、反比例函數(shù)中反比例系數(shù)的幾何意義如下圖,過(guò)反比例函數(shù)圖像上任一點(diǎn)P作x軸、y軸的垂線PM,PN,則所得的矩形PMON的面積S=PMPN=。。二次函數(shù)考點(diǎn)一、二次函數(shù)的概念和圖像(3~8分)1、二次函數(shù)的概念一般地,如果,那么y叫做x的二次函數(shù)。叫做二次函數(shù)的一般式。2、二次函數(shù)的圖像二次函數(shù)的圖像是一條關(guān)于對(duì)稱的曲線,這條曲線叫拋物線。拋物線的主要特征:①有開(kāi)口方向;②有對(duì)稱軸;③有頂點(diǎn)。3、二次函數(shù)圖像的畫法五點(diǎn)法:(1)先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線畫出對(duì)稱軸(2)求拋物線與坐標(biāo)軸的交點(diǎn):當(dāng)拋物線與x軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱點(diǎn)D。將這五個(gè)點(diǎn)按從左到右的順序連接起來(lái),并向上或向下延伸,就得到二次函數(shù)的圖像。當(dāng)拋物線與x軸只有一個(gè)交點(diǎn)或無(wú)交點(diǎn)時(shí),描出拋物線與y軸的交點(diǎn)C及對(duì)稱點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對(duì)對(duì)稱點(diǎn)A、B,然后順次連接五點(diǎn),畫出二次函數(shù)的圖像??键c(diǎn)二、二次函數(shù)的解析式(10~16分)二次函數(shù)的解析式有三種形式:(1)一般式:(2)頂點(diǎn)式:(3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒(méi)有交點(diǎn),則不能這樣表示??键c(diǎn)三、二次函數(shù)的最值(10分)如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)時(shí),。如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),,當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時(shí),,當(dāng)時(shí),??键c(diǎn)四、二次函數(shù)的性質(zhì)(6~14分)1、二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a>0a<0y0xy0x性質(zhì)(1)拋物線開(kāi)口向上,并向上無(wú)限延伸;(2)對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對(duì)稱軸的左側(cè),即當(dāng)x<時(shí),y隨x的增大而減??;在對(duì)稱軸的右側(cè),即當(dāng)x>時(shí),y隨x的增大而增大,簡(jiǎn)記左減右增;(4)拋物線有最低點(diǎn),當(dāng)x=時(shí),y有最小值,(1)拋物線開(kāi)口向下,并向下無(wú)限延伸;(2)對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,);(3)在對(duì)稱軸的左側(cè),即當(dāng)x<時(shí),y隨x的增大而增大;在對(duì)稱軸的右側(cè),即當(dāng)x>時(shí),y隨x的增大而減小,簡(jiǎn)記左增右減;(4)拋物線有最高點(diǎn),當(dāng)x=時(shí),y有最大值,2、二次函數(shù)中,的含義:表示開(kāi)口方向:>0時(shí),拋物線開(kāi)口向上,,,<0時(shí),拋物線開(kāi)口向下與對(duì)稱軸有關(guān):對(duì)稱軸為x=表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,)3、二次函數(shù)與一元二次方程的關(guān)系一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo)。因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn)。當(dāng)>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)<0時(shí),圖像與x軸沒(méi)有交點(diǎn)。補(bǔ)充:1、兩點(diǎn)間距離公式(當(dāng)遇到?jīng)]有思路的題時(shí),可用此方法拓展思路,以尋求解題方法)y如圖:點(diǎn)A坐標(biāo)為(x1,y1)點(diǎn)B坐標(biāo)為(x2,y2)則AB間的距離,即線段AB的長(zhǎng)度為A0xB2、函數(shù)平移規(guī)律(中考試題中,只占3分,但掌握這個(gè)知識(shí)點(diǎn),對(duì)提高答題速度有很大幫助,可以大大節(jié)省做題的時(shí)間)3、直線斜率:b為直線在y軸上的截距4、直線方程:一般兩點(diǎn)斜截距1,一般一般直線方程ax+by+c=02,兩點(diǎn)由直線上兩點(diǎn)確定的直線的兩點(diǎn)式方程,簡(jiǎn)稱兩點(diǎn)式:--最最常用,記牢3,點(diǎn)斜知道一點(diǎn)與斜率4,斜截斜截式方程,簡(jiǎn)稱斜截式:y=kx+b(k≠0)5,截距由直線在軸和軸上的截距確定的直線的截距式方程,簡(jiǎn)稱截距式:記牢可大幅提高運(yùn)算速度設(shè)兩條直線分別為,::若,則有且。若點(diǎn)P(x0,y0)到直線y=kx+b(即:kx-y+b=0)的距離:對(duì)于點(diǎn)P(x0,y0)到直線滴一般式方程ax+by+c=0滴距離有常用記牢中考點(diǎn)擊考點(diǎn)分析:內(nèi)容要求1、函數(shù)的概念和平面直角坐標(biāo)系中某些點(diǎn)的坐標(biāo)特點(diǎn)Ⅰ2、自變量與函數(shù)之間的變化關(guān)系及圖像的識(shí)別,理解圖像與變量的關(guān)系Ⅰ3、一次函數(shù)的概念和圖像Ⅰ4、一次函數(shù)的增減性、象限分布情況,會(huì)作圖Ⅱ5、反比例函數(shù)的概念、圖像特征,以及在實(shí)際生活中的應(yīng)用Ⅱ6、二次函數(shù)的概念和性質(zhì),在實(shí)際情景中理解二次函數(shù)的意義,會(huì)利用二次函數(shù)刻畫實(shí)際問(wèn)題中變量之間的關(guān)系并能解決實(shí)際生活問(wèn)題Ⅱ命題預(yù)測(cè):函數(shù)是數(shù)形結(jié)合的重要體現(xiàn),是每年中考的必考內(nèi)容,函數(shù)的概念主要用選擇、填空的形式考查自變量的取值范圍,及自變量與因變量的變化圖像、平面直角坐標(biāo)系等,一般占2%左右.一次函數(shù)與一次方程有緊密地聯(lián)系,是中考必考內(nèi)容,一般以填空、選擇、解答題及綜合題的形式考查,占5%左右.反比例函數(shù)的圖像和性質(zhì)的考查常以客觀題形式出現(xiàn),要關(guān)注反比例函數(shù)與實(shí)際問(wèn)題的聯(lián)系,突出應(yīng)用價(jià)值,3—6分;二次函數(shù)是初中數(shù)學(xué)的一個(gè)十分重要的內(nèi)容,是中考的熱點(diǎn),多以壓軸題出現(xiàn)在試卷中.要求:能通過(guò)對(duì)實(shí)際問(wèn)題情景分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義;會(huì)用描點(diǎn)法畫二次函數(shù)圖像,能叢圖像上分析二次函數(shù)的性質(zhì);會(huì)根據(jù)公式確定圖像的頂點(diǎn)、開(kāi)口方向和對(duì)稱軸,并能解決實(shí)際問(wèn)題.會(huì)求一元二次方程的近似值.分析近年中考,尤其是課改實(shí)驗(yàn)區(qū)的試題,預(yù)計(jì)2007年除了繼續(xù)考查自變量的取值范圍及自變量與因變量之間的變化圖像,一次函數(shù)的圖像和性質(zhì),在實(shí)際問(wèn)題中考查對(duì)反比例函數(shù)的概念及性質(zhì)的理解.同時(shí)將注重考查二次函數(shù),特別是二次函數(shù)的在實(shí)際生活中應(yīng)用.初中數(shù)學(xué)助記口訣(函數(shù)部分)特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。

自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“同左上加,異右下減”。

一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。

反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。正比例函數(shù)是直線,圖象一定過(guò)圓點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。

反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱軸是角分線x、y的順序可交換。

二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),a的正負(fù)開(kāi)口判,c的大小y軸看,△的符號(hào)最簡(jiǎn)便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào);同類項(xiàng)、合并好,再把系數(shù)來(lái)除掉;兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b,二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣:“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象限;開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限;k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減;圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。函數(shù)學(xué)習(xí)口決:正比例函數(shù)是直線,圖象一定過(guò)原點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵;反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱軸是角分線x、y的順序可交換;二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),a的正負(fù)開(kāi)口判,c的大小y軸看,△的符號(hào)最簡(jiǎn)便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。求定義域:求定義域有講究,四項(xiàng)原則須留意。

負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。

指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次冪。

限制條件不唯一,滿足多個(gè)不等式。

求定義域要過(guò)關(guān),四項(xiàng)原則須注意。

負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。

分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次冪。

限制條件不唯一,不等式組求解集。解一元一次不等式:先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

系數(shù)化“1”有講究,同乘除負(fù)要變向。

先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。

同類各項(xiàng)去合并,系數(shù)化“1”注意了。

同乘除正無(wú)防礙,同乘除負(fù)也變號(hào)。解一元一次不等式組:大于頭來(lái)小于尾,大小不一中間找。

大大小小沒(méi)有解,四種情況全來(lái)了。

同向取兩邊,異向取中間。

中間無(wú)元素,無(wú)解便出現(xiàn)。

幼兒園小鬼當(dāng)家,(同小相對(duì)取較小)

敬老院以老為榮,(同大就要取較大)

軍營(yíng)里沒(méi)老沒(méi)少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)解一元二次不等式:首先化成一般式,構(gòu)造函數(shù)第二站。

判別式值若非負(fù),曲線橫軸有交點(diǎn)。

a正開(kāi)口它向上,大于零則取兩邊。

代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。

方程若無(wú)實(shí)數(shù)根,口上大零解為全。

小于零將沒(méi)有解,開(kāi)口向下正相反。

13.1用公式法解一元二次方程

要用公式解方程,首先化成一般式。

調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。

確定參數(shù)abc,計(jì)算方程判別式。

判別式值與零比,有無(wú)實(shí)根便得知。

有實(shí)根可套公式,沒(méi)有實(shí)根要告之。用常規(guī)配方法解一元二次方程:左未右已先分離,二系化“1”是其次。

一系折半再平方,兩邊同加沒(méi)問(wèn)題。

左邊分解右合并,直接開(kāi)方去解題。

該種解法叫配方,解方程時(shí)多練習(xí)。用間接配方法解一元二次方程:已知未知先分離,因式分解是其次。

調(diào)整系數(shù)等互反,和差積套恒等式。

完全平方等常數(shù),間接配方顯優(yōu)勢(shì)

【注】恒等式解一元二次方程:方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想。

如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量。

b、c相等都為零,等根是零不要忘。

b、c同時(shí)不為零,因式分解或配方,

也可直接套公式,因題而異擇良方。正比例函數(shù)的鑒別:判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。

一量表示另一量,有沒(méi)有。

若有再去看取值,全體實(shí)數(shù)都需要。

區(qū)分正比例函數(shù),衡量可分兩步走。

一量表示另一量,是與否。

若有還要看取值,全體實(shí)數(shù)都要有。正比例函數(shù)的圖象與性質(zhì):正比函數(shù)圖直線,經(jīng)過(guò)和原點(diǎn)。

K正一三負(fù)二四,變化趨勢(shì)記心間。

K正左低右邊高,同大同小向爬山。

K負(fù)左高右邊低,一大另小下山巒。一次函數(shù):一次函數(shù)圖直線,經(jīng)過(guò)點(diǎn)。

K正左低右邊高,越走越高向爬山。

K負(fù)左高右邊低,越來(lái)越低很明顯。

K稱斜率b截距,截距為零變正函。反比例函數(shù):反比函數(shù)雙曲線,經(jīng)過(guò)點(diǎn)。

K正一三負(fù)二四,兩軸是它漸近線。

K正左高右邊低,一三象限滑下山。

K負(fù)左低右邊高,二四象限如爬山。二次函數(shù):二次方程零換y,二次函數(shù)便出現(xiàn)。

全體實(shí)數(shù)定義域,圖像叫做拋物線。

拋物線有對(duì)稱軸,兩邊單調(diào)正相反。

A定開(kāi)口及大小,線軸交點(diǎn)叫頂點(diǎn)。

頂點(diǎn)非高即最低。上低下高很顯眼。

如果要畫拋物線,平移也可去描點(diǎn),

提取配方定頂點(diǎn),兩條途徑再挑選。

列表描點(diǎn)后連線,平移規(guī)律記心間。

左加右減括號(hào)內(nèi),號(hào)外上加下要減。

二次方程零換y,就得到二次函數(shù)。

圖像叫做拋物線,定義域全體實(shí)數(shù)。

A定開(kāi)口及大小,開(kāi)口向上是正數(shù)。

絕對(duì)值大開(kāi)口小,開(kāi)口向下A負(fù)數(shù)。

拋物線有對(duì)稱軸,增減特性可看圖。

線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。

如果要畫拋物線,描點(diǎn)平移兩條路。

提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。

列表描點(diǎn)后連線,三點(diǎn)大致定全圖。

若要平移也不難,先畫基礎(chǔ)拋物線,

頂點(diǎn)移到新位置,開(kāi)口大小隨基礎(chǔ)。

【注】基礎(chǔ)拋物線列方程解應(yīng)用題:列方程解應(yīng)用題,審設(shè)列解雙檢答。

審題弄清已未知,設(shè)元直間兩辦法。

列表畫圖造方程,解方程時(shí)守章法。

檢驗(yàn)準(zhǔn)且合題意,問(wèn)求同一才作答。兩點(diǎn)間距離公式:同軸兩點(diǎn)求距離,大減小數(shù)就為之。

與軸等距兩個(gè)點(diǎn),間距求法亦如此。

平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。

差方相加開(kāi)平方,距離公式要牢記。二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):結(jié)論:a的絕對(duì)值越大,拋物線的開(kāi)口越小??偨Y(jié):的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減?。粫r(shí),有最小值.向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值.2.的性質(zhì):結(jié)論:上加下減。同左上加,異右下減總結(jié):的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值.向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值.3.的性質(zhì):結(jié)論:左加右減。同左上加,異右下減總結(jié):的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上X=h時(shí),隨的增大而增大;時(shí),隨的增大而減小;時(shí),有最小值.向下X=h時(shí),隨的增大而減?。粫r(shí),隨的增大而增大;時(shí),有最大值.4.的性質(zhì):總結(jié):的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上X=h時(shí),隨的增大而增大;時(shí),隨的增大而減?。粫r(shí),有最小值.向下X=h時(shí),隨的增大而減?。粫r(shí),隨的增大而增大;時(shí),有最大值.二次函數(shù)圖象的平移1.平移步驟:⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式,確定其頂點(diǎn)坐標(biāo);⑵保持拋物線的形狀不變,將其頂點(diǎn)平移到處,具體平移方法如下:2.平移規(guī)律在原有函數(shù)的基礎(chǔ)上“值正右移,負(fù)左移;值正上移,負(fù)下移”.概括成八個(gè)字“同左上加,異右下減”.三、二次函數(shù)與的比較請(qǐng)將利用配方的形式配成頂點(diǎn)式。請(qǐng)將配成。總結(jié):從解析式上看,與是兩種不同的表達(dá)形式,后者通過(guò)配方可以得到前者,即,其中.四、二次函數(shù)圖象的畫法五點(diǎn)繪圖法:利用配方法將二次函數(shù)化為頂點(diǎn)式,確定其開(kāi)口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo),然后在對(duì)稱軸兩側(cè),左右對(duì)稱地描點(diǎn)畫圖.一般我們選取的五點(diǎn)為:頂點(diǎn)、與軸的交點(diǎn)、以及關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)、與軸的交點(diǎn),(若與軸沒(méi)有交點(diǎn),則取兩組關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)).畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開(kāi)口方向,對(duì)稱軸,頂點(diǎn),與軸的交點(diǎn),與軸的交點(diǎn).五、二次函數(shù)的性質(zhì)1.當(dāng)時(shí),拋物線開(kāi)口向上,對(duì)稱軸為,頂點(diǎn)坐標(biāo)為.當(dāng)時(shí),隨的增大而減??;當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),有最小值.2.當(dāng)時(shí),拋物線開(kāi)口向下,對(duì)稱軸為,頂點(diǎn)坐標(biāo)為.當(dāng)時(shí),隨的增大而增大;當(dāng)時(shí),隨的增大而減?。划?dāng)時(shí),有最大值.六、二次函數(shù)解析式的表示方法1.一般式:(,,為常數(shù),);2.頂點(diǎn)式:(,,為常數(shù),);3.兩根式:(,,是拋物線與軸兩交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與軸有交點(diǎn),即時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.七、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系1.二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然.⑴當(dāng)時(shí),拋物線開(kāi)口向上,的值越大,開(kāi)口越小,反之的值越小,開(kāi)口越大;⑵當(dāng)時(shí),拋物線開(kāi)口向下,的值越小,開(kāi)口越小,反之的值越大,開(kāi)口越大.總結(jié)起來(lái),決定了拋物線開(kāi)口的大小和方向,的正負(fù)決定開(kāi)口方向,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論