版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽巢湖市2024年高三第三次測(cè)評(píng)數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類(lèi),因就其余不移動(dòng)也.合成弦方之冪,開(kāi)方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.3.設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.4.已知數(shù)列滿(mǎn)足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.5.函數(shù)在上的大致圖象是()A. B.C. D.6.已知圓M:x2+y2-2ay=0a>0截直線(xiàn)x+y=0A.內(nèi)切 B.相交 C.外切 D.相離7.已知拋物線(xiàn)的焦點(diǎn)與雙曲線(xiàn)的一個(gè)焦點(diǎn)重合,且拋物線(xiàn)的準(zhǔn)線(xiàn)被雙曲線(xiàn)截得的線(xiàn)段長(zhǎng)為,那么該雙曲線(xiàn)的離心率為()A. B. C. D.8.已知直線(xiàn):()與拋物線(xiàn):交于(坐標(biāo)原點(diǎn)),兩點(diǎn),直線(xiàn):與拋物線(xiàn)交于,兩點(diǎn).若,則實(shí)數(shù)的值為()A. B. C. D.9.如圖是國(guó)家統(tǒng)計(jì)局于2020年1月9日發(fā)布的2018年12月到2019年12月全國(guó)居民消費(fèi)價(jià)格的漲跌幅情況折線(xiàn)圖.(注:同比是指本期與同期作對(duì)比;環(huán)比是指本期與上期作對(duì)比.如:2019年2月與2018年2月相比較稱(chēng)同比,2019年2月與2019年1月相比較稱(chēng)環(huán)比)根據(jù)該折線(xiàn)圖,下列結(jié)論錯(cuò)誤的是()A.2019年12月份,全國(guó)居民消費(fèi)價(jià)格環(huán)比持平B.2018年12月至2019年12月全國(guó)居民消費(fèi)價(jià)格環(huán)比均上漲C.2018年12月至2019年12月全國(guó)居民消費(fèi)價(jià)格同比均上漲D.2018年11月的全國(guó)居民消費(fèi)價(jià)格高于2017年12月的全國(guó)居民消費(fèi)價(jià)格10.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.11.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.12.已知定義在上的可導(dǎo)函數(shù)滿(mǎn)足,若是奇函數(shù),則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線(xiàn)與拋物線(xiàn)交于點(diǎn),以線(xiàn)段為直徑的圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_______.14.已知向量,若向量與共線(xiàn),則________.15.已知雙曲線(xiàn)的一條漸近線(xiàn)方程為,則________.16.記數(shù)列的前項(xiàng)和為,已知,且.若,則實(shí)數(shù)的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實(shí)數(shù)的最大值.18.(12分)已知首項(xiàng)為2的數(shù)列滿(mǎn)足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.19.(12分)如圖,在四棱柱中,平面,底面ABCD滿(mǎn)足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線(xiàn)與平面所成角的正弦值.20.(12分)如圖,⊙的直徑的延長(zhǎng)線(xiàn)與弦的延長(zhǎng)線(xiàn)相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.21.(12分)以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線(xiàn)的極坐標(biāo)方程為,是上一動(dòng)點(diǎn),,點(diǎn)的軌跡為.(1)求曲線(xiàn)的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點(diǎn),直線(xiàn)的參數(shù)方程(為參數(shù)),直線(xiàn)與曲線(xiàn)的交點(diǎn)為,當(dāng)取最小值時(shí),求直線(xiàn)的普通方程.22.(10分)已知中,,,是上一點(diǎn).(1)若,求的長(zhǎng);(2)若,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
首先明確這是一個(gè)幾何概型面積類(lèi)型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆剑涿娣e為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)程序框圖寫(xiě)出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿(mǎn)足輸出的值為8.故選:C【點(diǎn)睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫(xiě)出每次循環(huán)結(jié)果即可解決,屬于簡(jiǎn)單題目.3、A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個(gè)零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】
利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.5、D【解析】
討論的取值范圍,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可判斷.【詳解】當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當(dāng)時(shí),,故切線(xiàn)的斜率變小,當(dāng)時(shí),,故切線(xiàn)的斜率變大,可排除A、B;當(dāng)時(shí),,則,所以函數(shù)在上單調(diào)遞增,令,,當(dāng)時(shí),,故切線(xiàn)的斜率變大,當(dāng)時(shí),,故切線(xiàn)的斜率變小,可排除C,故選:D【點(diǎn)睛】本題考查了識(shí)別函數(shù)的圖像,考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系以及導(dǎo)數(shù)的幾何意義,屬于中檔題.6、B【解析】化簡(jiǎn)圓M:x2+(y-a)2=a又N(1,1),r7、A【解析】
由拋物線(xiàn)的焦點(diǎn)得雙曲線(xiàn)的焦點(diǎn),求出,由拋物線(xiàn)準(zhǔn)線(xiàn)方程被曲線(xiàn)截得的線(xiàn)段長(zhǎng)為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線(xiàn),可得,則,故其準(zhǔn)線(xiàn)方程為,拋物線(xiàn)的準(zhǔn)線(xiàn)過(guò)雙曲線(xiàn)的左焦點(diǎn),.拋物線(xiàn)的準(zhǔn)線(xiàn)被雙曲線(xiàn)截得的線(xiàn)段長(zhǎng)為,,又,,則雙曲線(xiàn)的離心率為.故選:.【點(diǎn)睛】本題考查拋物線(xiàn)的性質(zhì)及利用過(guò)雙曲線(xiàn)的焦點(diǎn)的弦長(zhǎng)求離心率.弦過(guò)焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長(zhǎng).8、D【解析】
設(shè),,聯(lián)立直線(xiàn)與拋物線(xiàn)方程,消去、列出韋達(dá)定理,再由直線(xiàn)與拋物線(xiàn)的交點(diǎn)求出點(diǎn)坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的綜合應(yīng)用,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.9、D【解析】
先對(duì)圖表數(shù)據(jù)的分析處理,再結(jié)簡(jiǎn)單的合情推理一一檢驗(yàn)即可【詳解】由折線(xiàn)圖易知A、C正確;2019年3月份及6月份的全國(guó)居民消費(fèi)價(jià)格環(huán)比是負(fù)的,所以B錯(cuò)誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國(guó)居民消費(fèi)價(jià)格分別為,由題意可知,,,則有,所以D正確.故選:D【點(diǎn)睛】此題考查了對(duì)圖表數(shù)據(jù)的分析處理能力及進(jìn)行簡(jiǎn)單的合情推理,屬于中檔題.10、A【解析】
根據(jù)實(shí)數(shù)滿(mǎn)足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.11、A【解析】
由題先畫(huà)出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡(jiǎn)可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點(diǎn)睛】本題考查向量的線(xiàn)性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題12、A【解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡(jiǎn)不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時(shí),,所以,所以.由得,所以,故不等式的解集為.故選:A【點(diǎn)睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意求出以線(xiàn)段AB為直徑的圓E的方程,且點(diǎn)D恒在圓E外,即圓E上存在點(diǎn),使得,則當(dāng)與圓E相切時(shí),此時(shí),由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線(xiàn)的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點(diǎn)恒在圓外.圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),即圓上存在點(diǎn),使得,設(shè)過(guò)點(diǎn)的兩直線(xiàn)分別切圓于點(diǎn),要滿(mǎn)足題意,則,所以,整理得,解得,故實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)位置關(guān)系的應(yīng)用,以及直線(xiàn)與圓的位置關(guān)系的應(yīng)用,其中解答中準(zhǔn)確求得圓E的方程,把圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),轉(zhuǎn)化為圓上存在點(diǎn),使得是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題。14、【解析】
計(jì)算得到,根據(jù)向量平行計(jì)算得到答案.【詳解】由題意可得,因?yàn)榕c共線(xiàn),所以有,即,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學(xué)生的計(jì)算能力.15、【解析】
根據(jù)雙曲線(xiàn)的標(biāo)準(zhǔn)方程寫(xiě)出雙曲線(xiàn)的漸近線(xiàn)方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線(xiàn)的漸近線(xiàn)方程為,由于該雙曲線(xiàn)的一條漸近線(xiàn)方程為,,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線(xiàn)的漸近線(xiàn)方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)遞推公式,以及之間的關(guān)系,即可容易求得,再根據(jù)數(shù)列的單調(diào)性,求得其最大值,則參數(shù)的范圍可求.【詳解】當(dāng)時(shí),,解得.所以.因?yàn)?,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項(xiàng)為3,公差為2的等差數(shù)列,所以,則.令,則.當(dāng)時(shí),,數(shù)列單調(diào)遞減,而,,,故,即實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題考查由遞推公式求數(shù)列的通項(xiàng)公式,涉及數(shù)列單調(diào)性的判斷,屬綜合困難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進(jìn)而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開(kāi)后利用基本不等式可求得的最小值,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(1).當(dāng)時(shí),函數(shù)單調(diào)遞減,則;當(dāng)時(shí),函數(shù)單調(diào)遞增,則;當(dāng)時(shí),函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因?yàn)楹愠闪?,且,,所以恒成立,?因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,實(shí)數(shù)的最大值為.【點(diǎn)睛】本題考查含絕對(duì)值函數(shù)最值的求解,同時(shí)也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計(jì)算能力,屬于中等題.18、(1)見(jiàn)解析;(2)【解析】
(1)由原式可得,等式兩端同時(shí)除以,可得到,即可證明結(jié)論;(2)由(1)可求得的表達(dá)式,進(jìn)而可求得的表達(dá)式,然后求出的前項(xiàng)和即可.【詳解】(1)證明:因?yàn)?所以,所以,從而,因?yàn)?所以,故數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因?yàn)?所以,則.【點(diǎn)睛】本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項(xiàng)和公式的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于中檔題.19、(Ⅰ)證明見(jiàn)解析;(Ⅱ)【解析】
(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線(xiàn)與平面所成角為故.【點(diǎn)睛】本題考查了線(xiàn)面垂直,線(xiàn)面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.20、證明見(jiàn)解析【解析】
根據(jù)相似三角形的判定定理,已知兩個(gè)三角形有公共角,題中未給出線(xiàn)段比例關(guān)系,故可根據(jù)判定定理一需找到另外一組相等角,結(jié)合平面幾何的知識(shí)證得即可.【詳解】證明:∵,所以,又因?yàn)?,所以.在與中,,,故~.【點(diǎn)睛】本題考查平面幾何中同弧所對(duì)的圓心角與圓周角的關(guān)系、相似三角形的判定定理;考查邏輯推理能力和數(shù)形結(jié)合思想;分析圖形,找出角與角之間的關(guān)系是證明本題的關(guān)鍵;屬于基礎(chǔ)題.21、(1),;(2).【解析】
(1)設(shè)點(diǎn)極坐標(biāo)分別為,,由可得,整理即可得到極坐標(biāo)方程,進(jìn)而求得直角坐標(biāo)方程;(2)設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,,將直線(xiàn)的參數(shù)方程代入的直角坐標(biāo)方程中,再利用韋達(dá)定理可得,,則,求得取最小值時(shí)符合的條件,進(jìn)而求得直線(xiàn)的普通方程.【詳解】(1)設(shè)點(diǎn)極坐標(biāo)分別為,,因?yàn)?則,所以曲線(xiàn)的極坐標(biāo)方程為,兩邊同乘,得,所以的直角坐標(biāo)方程為,即.(2)設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,,將直線(xiàn)的參數(shù)方程(參數(shù)),代入的直角坐標(biāo)方程中,整理得.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025租房協(xié)議書(shū)合同簡(jiǎn)易版
- 洛陽(yáng)文化旅游職業(yè)學(xué)院《航空攝影》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度商鋪物業(yè)管理及環(huán)境維護(hù)服務(wù)協(xié)議3篇
- 2024全新專(zhuān)業(yè)醫(yī)療護(hù)理機(jī)構(gòu)護(hù)工雇傭合同樣本下載3篇
- 退休設(shè)計(jì)師返聘協(xié)議范例
- 動(dòng)物園水地暖施工合同
- 2024年度高端智能家居紗窗定制服務(wù)合同3篇
- 公園管理處聘用合同樣本
- 聯(lián)營(yíng)項(xiàng)目管理質(zhì)量保證
- 化肥廠(chǎng)地磅租賃協(xié)議
- 【MOOC】市場(chǎng)調(diào)查與研究-南京郵電大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2023年中央紀(jì)委國(guó)家監(jiān)委機(jī)關(guān)直屬單位招聘工作人員考試真題
- 2024-2025學(xué)年度教科版初中物理八年級(jí)上冊(cè)期末模擬卷(含答案)
- 《旅游概論》考試復(fù)習(xí)題庫(kù)(附答案)
- 1000畝水產(chǎn)養(yǎng)殖建設(shè)項(xiàng)目可行性研究報(bào)告
- 量子計(jì)算與區(qū)塊鏈
- 微電子器件期末復(fù)習(xí)題含答案
- 廣東珠海市駕車(chē)沖撞行人案件安全防范專(zhuān)題培訓(xùn)
- 2022版ISO27001信息安全管理體系基礎(chǔ)培訓(xùn)課件
- 廣東省深圳市寶安區(qū)多校2024-2025學(xué)年九年級(jí)上學(xué)期期中歷史試題
- 廣州市海珠區(qū)六中鷺翔杯物理體驗(yàn)卷
評(píng)論
0/150
提交評(píng)論