2024屆江蘇省興化市第一中學高三第二次模擬考試數(shù)學試卷含解析_第1頁
2024屆江蘇省興化市第一中學高三第二次模擬考試數(shù)學試卷含解析_第2頁
2024屆江蘇省興化市第一中學高三第二次模擬考試數(shù)學試卷含解析_第3頁
2024屆江蘇省興化市第一中學高三第二次模擬考試數(shù)學試卷含解析_第4頁
2024屆江蘇省興化市第一中學高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省興化市第一中學高三第二次模擬考試數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.2.函數(shù)在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-23.已知函數(shù).設,若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.4.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.5.已知定義在上的函數(shù)滿足,且當時,,則方程的最小實根的值為()A. B. C. D.6.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或87.復數(shù)的虛部是()A. B. C. D.8.若直線與曲線相切,則()A.3 B. C.2 D.9.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.10.復數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.11.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.12.已知集合,定義集合,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設平面向量與的夾角為,且,,則的取值范圍為______.14.在一次醫(yī)療救助活動中,需要從A醫(yī)院某科室的6名男醫(yī)生、4名女醫(yī)生中分別抽調3名男醫(yī)生、2名女醫(yī)生,且男醫(yī)生中唯一的主任醫(yī)師必須參加,則不同的選派案共有________種.(用數(shù)字作答)15.在邊長為2的正三角形中,,則的取值范圍為______.16.已知隨機變量服從正態(tài)分布,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.18.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.19.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前20.(12分)在平面直角坐標系中,為直線上動點,過點作拋物線:的兩條切線,,切點分別為,,為的中點.(1)證明:軸;(2)直線是否恒過定點?若是,求出這個定點的坐標;若不是,請說明理由.21.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?2.(10分)設函數(shù).(1)時,求的單調區(qū)間;(2)當時,設的最小值為,若恒成立,求實數(shù)t的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先根據(jù)向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.2、A【解析】

求出,對分類討論,求出單調區(qū)間和極值點,結合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.【點睛】本題考查函數(shù)的零點、導數(shù)的應用,考查分類討論思想,熟練掌握函數(shù)圖像和性質是解題的關鍵,屬于中檔題.3、D【解析】

求解的導函數(shù),研究其單調性,對任意不相等的正數(shù),構造新函數(shù),討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調性問題,根據(jù)參數(shù)范圍化簡后構造新函數(shù)轉換為含參恒成立問題,屬于一般性題目.4、D【解析】

先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.5、C【解析】

先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.6、B【解析】

根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結果.【詳解】函數(shù),若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質和函數(shù)的對稱性問題,屬基礎題7、C【解析】因為,所以的虛部是,故選C.8、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.9、A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.10、D【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關復數(shù)的問題,涉及到的知識點有復數(shù)的乘除運算,復數(shù)的共軛復數(shù),復數(shù)的模,屬于基礎題目.11、A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎題.12、C【解析】

根據(jù)定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.【點睛】本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)已知條件計算出,結合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.14、【解析】

首先選派男醫(yī)生中唯一的主任醫(yī)師,由題意利用排列組合公式即可確定不同的選派案方法種數(shù).【詳解】首先選派男醫(yī)生中唯一的主任醫(yī)師,然后從名男醫(yī)生、名女醫(yī)生中分別抽調2名男醫(yī)生、名女醫(yī)生,故選派的方法為:.故答案為.【點睛】解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質進行分類;二是按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).15、【解析】

建立直角坐標系,依題意可求得,而,,,故可得,且,由此構造函數(shù),,利用二次函數(shù)的性質即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設,,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設,,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設元、消元,將問題轉化為元二次函數(shù)的值域問題.16、0.22.【解析】

正態(tài)曲線關于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可?!驹斀狻俊军c睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.【點睛】本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.18、(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.19、(1)an=2n【解析】

(1)先設出數(shù)列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數(shù)列的和.【詳解】解:(1)設公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,裂項相消法在數(shù)列求和中的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.20、(1)見解析(2)直線過定點.【解析】

(1)設出兩點的坐標,利用導數(shù)求得切線的方程,設出點坐標并代入切線的方程,同理將點坐標代入切線的方程,利用韋達定理求得線段中點的橫坐標,由此判斷出軸.(2)求得點的縱坐標,由此求得點坐標,求得直線的斜率,由此求得直線的方程,化簡后可得直線過定點.【詳解】(1)設切點,,,∴切線的斜率為,切線:,設,則有,化簡得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點.【點睛】本小題主要考查直線和拋物線的位置關系,考查直線過定點問題,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.21、(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標系,設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.22、(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數(shù)的導數(shù),由于參數(shù)的范圍對導數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調區(qū)間;(2)由(1)的結論,求出的表達式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論