版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省臨沂市2024屆高考數(shù)學(xué)五模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}2.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.83.過圓外一點(diǎn)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是().A. B. C. D.4.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.15.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.6.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.7.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.8.已知函數(shù),則的最小值為()A. B. C. D.9.已知,,是平面內(nèi)三個(gè)單位向量,若,則的最小值()A. B. C. D.510.已知點(diǎn),是函數(shù)的函數(shù)圖像上的任意兩點(diǎn),且在點(diǎn)處的切線與直線AB平行,則()A.,b為任意非零實(shí)數(shù) B.,a為任意非零實(shí)數(shù)C.a(chǎn)、b均為任意實(shí)數(shù) D.不存在滿足條件的實(shí)數(shù)a,b11.是邊長為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.12.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動(dòng)到地,每次只移動(dòng)一個(gè)單位長度,則亮亮從移動(dòng)到最近的走法共有____種.14.函數(shù)的定義域是____________.(寫成區(qū)間的形式)15.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為______.16.在中,角,,的對(duì)邊長分別為,,,滿足,,則的面積為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角所對(duì)的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.18.(12分)已知直線過橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點(diǎn),與軸交于點(diǎn),求.20.(12分)據(jù)《人民網(wǎng)》報(bào)道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動(dòng)主導(dǎo)了地球變綠.據(jù)統(tǒng)計(jì),中國新增綠化面積的來自于植樹造林,下表是中國十個(gè)地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請(qǐng)根據(jù)上述數(shù)據(jù)分別寫出在這十個(gè)地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個(gè)地區(qū)中,任選一個(gè)地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個(gè)地區(qū)中,從退化林修復(fù)面積超過一萬公頃的地區(qū)中,任選兩個(gè)地區(qū),記X為這兩個(gè)地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù),求X的分布列及數(shù)學(xué)期望.21.(12分)如圖,正方體的棱長為2,為棱的中點(diǎn).(1)面出過點(diǎn)且與直線垂直的平面,標(biāo)出該平面與正方體各個(gè)面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.22.(10分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
解出集合A和B即可求得兩個(gè)集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.2、A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐模?,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、A【解析】過圓外一點(diǎn),引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程為,故選.4、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.5、C【解析】
對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)?,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開口向上的拋物線,對(duì)稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.6、D【解析】
列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.7、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.8、C【解析】
利用三角恒等變換化簡三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.9、A【解析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號(hào)可取到.故選:A【點(diǎn)睛】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.10、A【解析】
求得的導(dǎo)函數(shù),結(jié)合兩點(diǎn)斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實(shí)數(shù).【詳解】依題意,在點(diǎn)處的切線與直線AB平行,即有,所以,由于對(duì)任意上式都成立,可得,為非零實(shí)數(shù).故選:A【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用,求切線的斜率,考查兩點(diǎn)的斜率公式,以及化簡運(yùn)算能力,屬于中檔題.11、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切危?、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.12、D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分三步來考查,先從到,再從到,最后從到,分別計(jì)算出三個(gè)步驟中對(duì)應(yīng)的走法種數(shù),然后利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】分三步來考查:①從到,則亮亮要移動(dòng)兩步,一步是向右移動(dòng)一個(gè)單位,一步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;②從到,則亮亮要移動(dòng)六步,其中三步是向右移動(dòng)一個(gè)單位,三步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;③從到,由①可知有種走法.由分步乘法計(jì)數(shù)原理可知,共有種不同的走法.故答案為:.【點(diǎn)睛】本題考查格點(diǎn)問題的處理,考查分步乘法計(jì)數(shù)原理和組合計(jì)數(shù)原理的應(yīng)用,屬于中等題.14、【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.15、1【解析】
根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進(jìn)而可求,然后結(jié)合余弦定理可求,代入,計(jì)算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負(fù)的舍去),.故答案為.【點(diǎn)睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)先由正弦定理,得到,進(jìn)而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進(jìn)而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因?yàn)椋?,即,所以,又因?yàn)椋裕?(2)在和中,由余弦定理得,.因?yàn)?,,,,又因?yàn)椋?,所以,所以,又因?yàn)椋?所以的面積.【點(diǎn)睛】本題主要考查解三角形,靈活運(yùn)用正弦定理和余弦定理即可,屬于??碱}型.18、(1)(2)【解析】
(1)由直線可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線,點(diǎn)到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點(diǎn)到直線距離求得,根據(jù)直線l與線段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點(diǎn),所以橢圓右焦點(diǎn)的坐標(biāo)為,故,因?yàn)榫€段AB的中點(diǎn)是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因?yàn)榈街本€的距離分別是,由于直線l與線段AB(不含端點(diǎn))相交,所以,即,所以,四邊形的面積,令,,則,所以,當(dāng),即時(shí),,因此四邊形面積的最大值為.【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關(guān)系的應(yīng)用,考查運(yùn)算能力.19、(1)(x-1)2+y2=4,直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.【解析】
(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.【詳解】(1)由曲線C的參數(shù)方程(α為參數(shù))(α為參數(shù)),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標(biāo)方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數(shù)方程為(t為參數(shù)).設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.20、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省;(2);(3)分布列見詳解,數(shù)學(xué)期望為【解析】
(1)通過數(shù)據(jù)的觀察以及計(jì)算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計(jì)算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個(gè)數(shù),然后可得結(jié)果.(3)計(jì)算退化林修復(fù)面積超過一萬公頃的地區(qū)中選兩個(gè)地區(qū)總數(shù),退化林修復(fù)面積超過六萬公頃的地區(qū)的個(gè)數(shù)為,列出所有取值并計(jì)算相應(yīng)概率,然后可得結(jié)果.【詳解】(1)人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年互聯(lián)網(wǎng)醫(yī)療解決方案技術(shù)合作協(xié)議
- 2025年雙方協(xié)商勞務(wù)派遣協(xié)議
- 2025年P(guān)PP項(xiàng)目合作財(cái)務(wù)管理協(xié)議
- 主材供應(yīng)及合作框架合同 2024年版一
- 2025版區(qū)塊鏈技術(shù)應(yīng)用合伙人合作協(xié)議3篇
- 2025年度智能建筑安裝工程承包技師合同4篇
- 二零二五年度酒吧食品安全管理與承包合同
- 2025年度城市公交車定點(diǎn)維修與應(yīng)急保障合同
- 二零二五年度汽車維修免責(zé)聲明適用于車主自帶配件
- 2025年度地鐵隧道鋼筋工勞務(wù)施工安全質(zhì)量保障合同
- 建筑結(jié)構(gòu)課程設(shè)計(jì)成果
- 班級(jí)建設(shè)方案中等職業(yè)學(xué)校班主任能力大賽
- 纖維增強(qiáng)復(fù)合材料 單向增強(qiáng)材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測定 編制說明
- 習(xí)近平法治思想概論教學(xué)課件緒論
- 寵物會(huì)展策劃設(shè)計(jì)方案
- 孤殘兒童護(hù)理員(四級(jí))試題
- 梁湘潤《子平基礎(chǔ)概要》簡體版
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護(hù)理課件
- 小學(xué)英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
評(píng)論
0/150
提交評(píng)論